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Abstract 
 
As we navigate our visual environment, our viewpoint shifts, causing predictable changes in object 
appearance. Moving forward, for instance, increases the retinal size of objects in a scene, 
proportionally with the distance travelled. Such regularities can be exploited to predict visual object 
transformations, thereby facilitating object perception. Previous research showed that observers 
automatically predict the orientation of an object from the rotation of the surrounding scene. It 
remains unknown, however, whether this is a ubiquitous property of human vision that generalizes 
to other transformations. In three behavioral experiments (N=151), we investigated whether 
observers automatically predict the retinal size of temporarily occluded objects during forward 
motion. Participants performed a perceptual discrimination task on the objects that reappeared in a 
size that either matched or mismatched the change in viewing distance conveyed by the scene 
context. We found that scene-driven size expectations strongly influenced task performance. This 
effect remained consistent even when size expectations were violated on a majority of trials, 
suggesting that scene context elicits automatic predictions that cannot easily be overruled by short-
term evidence. We conclude that scenes drive predictions of object transformations, capitalizing on 
the predictable ways in which visual input is altered when our viewpoint changes. 
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Introduction 
 
As we move through our environment, the visual input evoked by objects in the world 
systematically changes along with our changing viewpoint. For instance, when we walk around an 
object, we see it rotating through the depth plane, and as we get closer or farther, the retinal size 
of an object increases or decreases. Predicting how these transformations affect the appearance 
of objects may allow us to track, detect, or recognize objects more readily, and is therefore crucial 
for navigating the world effectively. The task of predicting object transformations is 
computationally challenging, however, as it requires several inferences to be made. In the case of 
mental rotation, for example, the direction and amount of rotation to apply to the object must be 
determined (Hamrick & Griffiths, 2014). It would be advantageous, then, if we could exploit the 
redundancy of real-world scenes by mentally transforming objects coherently with their context.  

For at least some mental transformations, this seems to be the case: in our recent work, 
we found that object representations are automatically rotated concurrently with the viewpoint of 
the surrounding scene (Aldegheri et al., 2023, 2025). It remains unknown, however, whether this 
influence of scene context on mental object transformations is a general phenomenon or whether 
it is limited to rotation. Mental rotation has been studied extensively (Shepard & Metzler, 1971; 
Cooper & Shepard, 1973; Shepard & Cooper, 1982; Larsen, 2014; Xue et al., 2017), but prior 
research indicates that it is merely one among many transformations that we are able to simulate 
in our minds. For example, humans are able to mentally translate or scale objects similarly to how 
they rotate them (Bennett, 2002; Bundesen et al., 1983; Bundesen & Larsen, 1975; Larsen & 
Bundesen, 1978, 1998; Schmidt et al., 2016; Sekuler & Nash, 1972). This suggests that predicting 
object transformations might be a generalized cognitive capacity, encompassing several different 
ways in which the visual input from objects can change as we navigate the world. Because the 
way in which object properties change may be predicted from changes in scene context (as 
described above), we asked whether changes in scene context are used to predict object 
transformations, beyond rotation alone. This would indicate that predicting mental object 
transformations from changes in scene context is a principled way in which we exploit 
redundancies in the environment to reduce computational cost. 
 Here, to investigate the role of scene context in driving mental transformations beyond 
rotation, we focus on scaling, the predictable change in an object’s retinal size as a function of 
viewing distance. As objects rarely physically shrink or expand in the real world, their retinal size 
mostly varies with our distance from them: accordingly, behavioral evidence suggests that we 
generally perceive size changes as translations in depth (Bundesen et al., 1983; Larsen & 
Bundesen, 2009). Because retinal size depends on distance, scene context should play a crucial 
role in influencing our representations of object size, as real-world scenes contain a rich variety of 
depth cues (Landy et al., 1995). Indeed, the perceived size of an object has long been known to 
be altered by pictorial depth cues in a scene, such that objects farther away are perceived as 
larger, reflecting their inferred real-world size (Leibowitz et al., 1969; Yildiz et al., 2021; Yeh et al., 
2024). The influence of scene context on object size is not limited to perceived objects: it can also 
affect internally generated representations of objects that are not (yet) perceived. When observers 
search for objects at particular distances in a scene, their search templates - the top-down object 
representations evoked during visual search - have been shown to scale in accordance with 
search distance (Gayet & Peelen, 2022; Gayet et al., 2024). Internal representations of objects, 
then, can be adaptively rescaled based on the scene context. A still open question, however, is 
whether the rescaling of object representations occurs dynamically, as the distance to the scene 
changes. If visual object representations would dynamically update in accordance with changes 
in the surrounding scene context (e.g., through rotation and scaling), this would facilitate the 
perception of, and interaction with, objects in dynamic real-world environments. 
 We ran a series of online behavioral experiments to determine whether internal object 
representations are rescaled according to scene viewpoint. To this end, we built on an 
experimental paradigm that we recently developed to study changes in object rotation (Aldegheri 
et al., 2023). On each trial, we showed participants an object placed within a realistic 3D scene 
(Figure 1). The viewpoint on the scene translated in depth, with the camera ‘zooming in’. During 



this shift in viewpoint, the object was concealed by an occluder. Eventually, the object 
reappeared, either with a size consistent with the new viewing distance on the surrounding scene 
(Congruent trials), or with an inconsistent size (Incongruent trials). Importantly, the amount of 
scene translation (small or large) varied randomly across trials, always in the same number of 
discrete steps while the object was occluded (Figure 2), so that whether the object had been 
rescaled congruently or incongruently could only be known by integrating the change in scene 
distance and the change in object size, both relative to the original scene, at the start of the trial 
(before occlusion). In other words, neither the final snapshot alone nor the amount of scene 
translation alone provided information about object size congruency. Participants had to perform 
an orthogonal visual discrimination task on the object that reappeared, judging whether two 
versions of the object were the same or different. Importantly, neither the scene context, nor the 
expectation of object size that the scene may convey, were relevant for the discrimination task. 
We compared performance on this discrimination task between Congruent and Incongruent trials, 
and found that expectations of object size, driven by the scene, substantially influenced 
participants’ responses. This suggests that scene context drives internal predictions of object size 
even when this is not required for the task at hand. Moreover, across three experiments, we 
manipulated the probability that the objects reappeared in a Congruent size (i.e., in accordance 
with the change in scene viewpoint). We found that even when scene-driven expectations were 
violated on a large proportion of trials, they still influenced behavioral responses in a similar 
manner, showcasing the obligatory and automatic nature of the influence of scene context on 
object transformations. Altogether, these results indicate that mental scaling can be driven by 
scene context in an automatic way, analogously to rotation, pointing to a general role of scene 
viewpoint in driving transformations of object representations. 

 

Methods 
 
Participants 
All experiments were run online, hosted on Pavlovia (https://pavlovia.org/) and programmed in 
Javascript using JsPsych 6.3.0 (De Leeuw, 2015) and the jspsych-psychophysics library (Kuroki, 
2021). Participants were recruited on Prolific (Palan & Schitter, 2018) and had to meet the 
following criteria: reside in Europe or the UK, to ensure that they were participating during day 
hours; have participated in at least 10 previous studies on Prolific; and have a Prolific approval 
rate of at least 95%.  

Participants provided informed consent before the study and received monetary 
compensation for their participation. The study was approved by the Radboud University Faculty 
of Social Sciences Ethics Committee (ECSW2017-2306-517). Participants were included in the 
analysis if a one-sided binomial test comparing their accuracy in our same/different task with 50% 
was significant (at α = 0.05), meaning that they were performing better than chance across all 
conditions. We continued data collection until the number of included participants reached 50 for 
each experiment. In Experiment 1, we excluded 47 participants. Of the included 50 participants, 
24 were female, 25 were male, and one participant’s demographic information was missing. Mean 
age was 27.1 ± 4.1. In Experiment 2, we excluded 37 participants. Of the included 50 participants, 



25 were female, 24 were male, and 1 participant’s information was missing. Mean age was 25.8 ± 
4.8. In Experiment 3, we excluded 42 participants. Of the included 51 participants, 21 were 
female, and mean age was 26.7 ± 4.5.  
 The high exclusion rate was likely due to the difficulty of the task. The difference between 
probe stimuli was defined in 3D space (object position in depth), limiting the range of possible 
stimulus differences we could show. We wanted to make sure that the difference between 
different object positions (and thus Congruent and Incongruent positions) was noticeable, so 
probe objects could appear at either very near or very far distances. We could thus not use the 
full range of distances available in the scene, and for far object positions, depth differences were 
very hard to notice. Moreover, we kept the presentation time short (200 ms) for each of the two 
target stimuli, in order to reduce the influence of deliberate judgment and investigate how scene-

Figure 1: (A) Illustration of the viewpoint shift sequences that were shown during the experiment. A 
realistic 3D scene featuring a central object was shown, and viewpoint sequences were generated by 
gradually moving the camera closer to the object with a constant speed. Discrete snapshots of these 
sequences were shown in the experiment. (B) Example of a trial: after the object was shown in its initial 
position, the scene viewpoint started shifting toward the object (‘zooming in’). During most of this 
viewpoint shift, the object was occluded by a grey rectangle, and after the shift was completed, the 
occluder disappeared, revealing the object. The object was briefly flashed twice (200 ms each, with a 100 
ms ISI), either with the exact same position (and retinal size), or two slightly different positions. 
Participants’ task was to judge whether the two appearances of the object looked the ‘same’ or ‘different’. 
In this example, they are different: the object is slightly smaller in the second appearance (arrows added 
for illustration). 
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driven expectations influenced a primarily perceptual task. Importantly, however, all results 
reported here remained consistent with no participant exclusions (Figure S1). 
 
Stimuli 
The stimuli were based on 4 different indoor scenes (Figure S2) modeled in Blender 2.92 (Blender 
Foundation) and rendered using the Cycles rendering engine for realistic lighting. The scenes all 
had the same layout (floor, two walls at a right angle and a main object in the center) but the main 
object varied, as well as the objects present in the background (adjacent to the walls), and the 
textures on the walls and floor. The central object could be a couch or a bed: we chose large, 
immovable object categories that are generally expected to remain in a fixed position within a 
scene. For each scene, a sequence of different viewpoints was rendered by translating the 
camera gradually closer to the scene (zooming in, Figure 1A). The main object was always fully 
included in the frame, while other background objects could go out of the frame. The main object 
was always presented with its longer side (front for the couch, side for the bed) facing the viewer. 
The height and pitch of the camera were chosen so that the main object would always remain at 
the center of the scene. All scene images had a resolution of 960 x 540 pixels. 
 
Procedure 
Each trial (Figure 1B) began with a fixation dot (which was always present during the trial, radius 
5 pixels) for 500 ms, followed by the first view of the scene for 2000 ms, the 3 intermediate views 
for 500 ms each, and the final view for a randomly jittered duration between 1500 and 2000 ms. 
The central object (couch or bed) was fully visible for the first and second view, and was occluded 
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Figure 2: Illustration of the experimental design, showing the initial position of the object relative to the 
scene (either Near or Far), and the final images (after the whole scene translation sequence and the 
occlusion period) resulting from a Small or Large translation on Congruent or Incongruent trials. As 
highlighted by the color frames, the same (final) image could appear as either Congruent or Incongruent 
on different trials. 
 
 



by a grey rectangle during the third, fourth and final view. The occluder had the height and width 
of the largest possible view of the object in a specific scene, plus a margin (horizontal margin: 110 
pixels, vertical: 40 pixels) to ensure the object was fully covered and its shadow was not visible, 
which would have provided a cue to its size behind the occluder. 
 After the final view of the scene was shown, the occluder disappeared, briefly revealing the 
object (within the scene) twice, for 200 ms each, with a 100 ms inter-stimulus interval. We will 
refer to these two brief presentations of the object as the probes. Participants’ task was to report 
whether the second probe was the ‘same’ as, or ‘different’ from, the first, by pressing the F or J 
key, respectively. After responding, they would receive feedback: the fixation dot would turn 
green following a correct answer, and red following an incorrect one, for 250 ms. They had a 
maximum of 2500 ms to respond, after which the fixation dot would turn black, the experiment 
would skip to the next trial and the current trial would be counted as missed. 
 Participants were explicitly told that their task would be on the final two snapshots of the 
objects exclusively. They were additionally instructed to nonetheless pay attention to the 
preceding sequence of images. The position of the two probes in depth, and thus their retinal 
size, was defined in terms of distance in the virtual scene, using the default Blender unit. We 
henceforth refer to this measurement unit as arbitrary unit (AU). The first probe was randomly 
sampled from a normal distribution (SD = 0.05 AU) centered around the Congruent or Incongruent 
object position, to add a small amount of jitter, and then rounded to show the nearest rendered 
view (views were rendered in steps of 0.025 AU). On half of trials, the second probe was exactly 
the same as the first probe (‘same’ trials), thus requiring a ‘same’ response. On the other half of 
trials (‘different’ trials), the probe object was translated in depth relative to the first (see Figure 1, 
bottom left), thus requiring a ‘different’ response. The shift could occur in forward or backward 
direction with equal probability. 
 The depth difference between the two probes (on ‘different’ trials) was titrated using a 2-
down 1-up staircase, to keep the task difficulty constant across participants and across 
experiments. Specifically, a single staircase was used across both Congruent and Incongruent 
trials to ensure overall performance was around 70% correct (Wetherill & Levitt, 1965) across 
conditions, while still allowing for accuracy differences between the Congruent and Incongruent 
conditions. The depth difference was adjusted after both ‘same’ and ‘different’ trials. The starting 
value for the staircase was 1 AU, the initial step size was 0.05 AU (but was halved after 3 
staircase reversals), and the minimum and maximum possible depth differences shown were 
0.025 and 1 AU, respectively. The means and standard deviations of the depth differences 
reached by the staircase in the second half of trials were 0.68 ± 0.23 in Experiment 1, 0.72 ± 0.19 
in Experiment 2, and 0.7 ± 0.20 AU in Experiment 3. 
 Each experiment lasted about 30 minutes in total and comprised 8 experimental blocks, 
after each of which participants were encouraged to take a short break. Before the experiment 
began, participants read the on-screen instructions, accompanied by demonstration images, at 
their own pace. Then they completed a short practice run. During the practice run, the 
presentation time of the two probes gradually decreased across trials, from 300 ms to the 
eventual presentation time that was used in the main experiment (200 ms). This allowed 
participants to familiarize with the task with an initially less challenging presentation time. 
 
Experimental design 
Trials varied along four factors (Figure 2): Congruency (Congruent, Incongruent), initial Object 
Position relative to the scene (two possible distances from the observer, Near or Far), amount of 
Scene Translation (Small or Large), and Scene (1 of 4 different exemplars). The only difference 
between the three experiments is that the proportion of Congruent and Incongruent trials was 
varied (75% of total trials were Congruent in Exp. 1, 50% in Exp. 2, and 25% in Exp. 3).  

All factors of non-interest (2 x Object Position, 2 x Scene Translation, and 4 x Scene) were 
fully balanced within Congruent and Incongruent trials. The experiment was divided into four 
partitions (assigned to be either Congruent or Incongruent depending on the experiment), in which 
each of these (2 x 2 x 4 =) 16 conditions of non-interest were repeated 3 times. This resulted in a 
total of 192 trials in each experiment. All these trials were presented in randomized order 
throughout the experiment. 



 On Incongruent trials, the object reappeared at the end of the sequence in a position that 
was inconsistent with the position of the object shown at the start of the sequence: on Near trials, 
the object appeared in the Far position, and vice versa. By doing so, we ensured that the exact 
same images were used as Congruent in the context of one trial, and Incongruent in another, 
avoiding any possible confounds due to visual differences between conditions (Figure 2). 
 
Data analysis 
We used three different measures of performance: (1) accuracy (percentage of correct responses 
over all trials), (2) sensitivity (d’) and (3) criterion. All three measures were computed separately for 
each condition of interest (Congruent and Incongruent trials). We computed d’ and criterion in 
order to disentangle the influence of scene-driven expectations on observers’ sensitivity and bias. 
We consider ‘Same’ trials as noise, and ‘Different’ as signal, meaning that a positive criterion 
indicates a bias towards responding ‘same’. We used the loglinear method (Hautus, 1995) to 
correct for the rare cases of 100% accuracy in a particular condition. Sensitivity (d’) and criterion 
(c) were thus computed as follows: 
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Where Φ"# is the inverse of the normal cumulative distribution function, and Hcorr and FAcorr are the 
loglinear-corrected hit and false alarm rates, respectively, which were obtained as follows: 
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Where Nhit, Nmiss are the numbers of hit and miss trials, and NFA and NCR are the numbers of false 
alarm and correct rejection trials, respectively. Trials on which participants did not provide a 
response were excluded from the analysis. 
 
Post-experiment survey 
After completing the experiment, participants were asked three questions that would help us 
gauge their awareness of the key experimental manipulation. The questions were: 
• “Your task was only on the final image, when the object changed or not. Did you also pay 

attention to the sequence of images before the task image?” - the response had to be 
indicated on a Likert scale from 1 (Not at all) to 7 (All the time). 

• “When the scene shifted, did you anticipate seeing the object in the correct viewpoint after it 
reappeared?” - the response also had to be indicated on a 1-7 Likert scale. 

• “What percentage of objects were in line with your expectation? (They reappeared with the 
correct viewpoint)” - the response had to be a value in percentage, from 0 to 100%. 

 
Analysis software 
All analyses were conducted in Python using Pandas 1.2.5 (McKinney, 2011), Numpy 1.20.2 
(Harris et al., 2020), Pingouin 0.3.4 (Vallat, 2018), and Scipy 1.6.2 (Virtanen et al., 2020), and 
results were visualized using Matplotlib 3.3.4 (Hunter, 2007), and Seaborn 0.11.1 (Waskom, 2021). 



Results 
 
Experiment 1: 75% of Congruent trials 
In the first experiment (Figure 3), the object appeared in the congruent view (given the scene 
context) on a majority (75%) of trials. Across conditions, participants’ mean accuracy (and SEM) 
was 0.68 ± 0.01, indicating that they were able to perform the task, and that the staircase 
successfully approached the desired accuracy of 70%. Analyzing overall criterion, we found that it 
was significantly above zero (mean: 0.17, t(49) = 5.44, p < 0.001, d = 0.77, 95% CI = [0.11, 0.23]), 
indicating a general bias towards responding ‘same’, possibly due to the relatively small 
perceptual differences between the probes.  
 In our key analyses, we first compared accuracy between the Congruent and Incongruent 
conditions. We found participants to be significantly more accurate on Congruent than 
Incongruent trials (means: 0.69 vs. 0.65; t(49) = 3.17, p = 0.003, d = 0.53, 95% CI = [0.01, 0.06]), 
as shown in Figure 3. Next, analyzing sensitivity and criterion separately, we found that both 
measures were significantly influenced by congruency (mean sensitivity: 1.02 vs. 0.79; t(49) = 
3.70, p < 0.001, d = 0.60, 95% CI = [0.10, 0.35]; mean criterion: 0.22 vs. 0.00; t(49) = 4.49, p < 
0.001, d = 0.78, 95% CI = [0.13, 0.33]). Participants were more sensitive when performing the task 
on objects with a congruent size. Additionally, they tended to respond ‘different’ more often for 
incongruent objects, canceling out their overall bias. Overall, this result indicates that scene-
driven size expectations significantly affected participants’ responses in the task, despite the 
absence of explicit requirements to predict object size.   
 
Experiment 2: 50% of Congruent trials 
In Experiment 1, the object reappeared with a size that matched participants’ scene-driven 
expectations on a majority of trials. Thus, the short-term expectations established during the 
experiment matched the long-term expectations derived from real-world regularities (the fact that 
objects are transformed coherently with the surrounding scene). In Experiment 2 (Figure 4), we 
investigated whether long-term (real-world) expectations would still affect task performance when 
congruent and incongruent object sizes appear with the same probability during the experiment 
(i.e., equating short-term expectations). This experiment was identical to Experiment 1 in all 

Figure 3: Results of Experiment 1 (75% Congruent trials). Mean (and SEM) accuracy, sensitivity, and 
criterion for the Congruent and Incongruent trials. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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respects, except that now objects reappeared from occlusion in a congruent size in 50% of trials 
(instead of 75%).  

Like in Experiment 1, participants were able to perform the task well above chance level 
(mean accuracy and SEM: 0.68 ± 0.01). Also consistently with the previous experiment, their 
criterion was significantly above zero (mean: 0.15, t(49) = 4.70, p < 0.001, d = 0.66, 95% CI = 
[0.09, 0.22]), meaning that they had a bias towards reporting ‘same’ (i.e., no change between the 
two probes). 
 Comparing accuracy between the Congruent and Incongruent conditions, we found no 
significant difference (means: 0.69 vs. 0.68; t(49) = 0.89, p = 0.375, d = 0.14, 95% CI = [-0.01, 
0.03]). Analyzing the effects on sensitivity and criterion separately, we found no significant 
difference of congruency on sensitivity (means: 1.02 vs. 0.94; t(49) = 1.34, p = 0.187, d = 0.21, 
95% CI = [-0.04, 0.21]). On the other hand, criterion was significantly higher for congruent than 
incongruent objects (means: 0.23 vs. 0.07; t(49) = 3.07, p = 0.003, d = 0.55, 95% CI = [0.06, 
0.27]). This difference between conditions entails that participants were still forming an 
expectation of the object size, as implied by the scene, and that this expectation was influencing 
their responses in the task. Unlike in Experiment 1, however, there was no difference in 
perceptual sensitivity when objects reappeared in congruent or incongruent sizes with equal 
probability. We address possible reasons for this discrepancy in the Discussion. 
 
Experiment 3: 25% of Congruent trials 
In Experiment 3 (Figure 5), we asked whether scene-driven predictions of object size would 
reverse if the object reappeared in a congruent size on a minority (i.e., 25%) of trials. In this  
situation, the scene context is counterpredictive of the object size. If effects of scene context 
remain consistent with those of Experiments 2 and 3 (rather than reversing), this would testify to 
the automaticity of scene-driven predictions of object size. 

Consistently with the previous experiments, participants performed the task well above 
chance level (mean accuracy and SEM: 0.69 ± 0.01). Also consistently with the previous 
experiments, they showed a strong overall bias towards responding ‘same’, leading to a 
significantly positive criterion (mean: 0.13, t(50) = 4.10, p < 0.001, d = 0.57, 95% CI = [0.06, 0.19]). 
 Comparing Congruent and Incongruent trials, we found no significant difference in 
accuracy (means: 0.70 vs. 0.68; t(50) = 1.16, p = 0.253, d = 0.17, 95% CI = [-0.01, 0.03]) and no 
significant difference in sensitivity (means: 1.07 vs. 0.99, t(50) = 1.20, p = 0.236, d = 0.18, 95% CI 

Figure 4: Results of Experiment 2 (50% Congruent trials). Mean (and SEM) accuracy, sensitivity, and 
criterion for the Congruent and Incongruent trials. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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= [-0.05, 0.21]). On the other hand, criterion was significantly higher for Congruent than 
Incongruent trials (means: 0.25 vs. 0.08, t(50) = 3.68, p < 0.001, d = 0.61, 95% CI = [0.08, 0.26]). 
Thus, object size congruency influenced participants’ responses in a manner that was 
qualitatively similar to Experiment 1, even though scene-based expectations were now violated on 
a majority of trials.  

Unlike Experiment 1 (but similarly to Experiment 2), however, this shift in criterion was 
not accompanied by an effect on perceptual sensitivity. Importantly, the numerical direction of all 
results (differences in accuracy, sensitivity, and criterion) was the same as in the previous two 
experiments, indicating that short-term violations of real-world regularities did not reverse their 
effect on performance.  
 
Congruency-probability interaction 
Analyzing the three experiments separately revealed an apparent discrepancy: scene-based size 
expectations affected both sensitivity and criterion in Experiment 1, in which the object 
reappeared with the congruent size on most trials, but they only affected bias in Experiments 2 & 
3, in which expectations were violated on a substantial proportion of trials. To clarify whether this 
difference was statistically significant, we ran three separate mixed ANOVAs on the three  
behavioral measures of interest (accuracy, sensitivity and criterion), with Congruency as within-
subject, and Probability/experiment as between-subject factors. Results are shown in Table 1: for 
accuracy, we found a significant main effect of Congruency (F1,148 = 9.42, p = 0.003, η2

p = 0.060), 
and no interaction between Probability and Congruency (F2,148 = 1.81, p = 0.167, η2

p = 0.024). This 
shows that accuracy on the discrimination task was similarly affected by size (in)congruencies in 
all three experiments (i.e., regardless of short-term probabilities). For sensitivity, likewise, we 
found a significant main effect of Congruency (F1,148 = 12.57, p = 0.001, η2

p = 0.078) and no 
significant interaction between Probability and Congruency (F2,148 = 1.77, p = 0.174, η2

p = 0.023).  

Figure 5: Results of Experiment 3 (25% Congruent trials). Mean (and SEM) accuracy, sensitivity, and 
criterion for the Congruent and Incongruent trials. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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The effect of size congruency on perceptual sensitivity, then, was not significantly altered by the  
probability of the object appearing with the congruent size. For criterion, we found a significant 
main effect of Congruency (F1,148 = 41.73, p < 0.001, η2

p = 0.220), but no interaction (F2,148 = 0.48, p 
= 0.617, η2

p = 0.006), confirming the interpretation of the individual experiments by demonstrating 
that size congruency strongly and consistently influenced participants’ criterion across all three 
experiments. 
 Overall, this analysis indicates that across the three experiments, the effect of congruency 
on all three behavioral measures (accuracy, sensitivity and criterion) was consistent. Regardless 
of the short-term probability with which they were shown during the experiment, then, objects 
with an incongruent size were still perceived as such, yielding similar effects on task performance. 
 
Final survey data 
The purpose of the final survey questions was to assess to what extent participants were aware of 
the experimental manipulation: how much they paid attention to the sequence of scene 
viewpoints before the target object appeared, how much they actively tried to predict the final 
object viewpoint, and their estimate of the probability of the object appearing with the congruent 
size (see Methods for the actual questions asked).  
 Table S1 reports participants’ mean responses for each of the questions, together with 
their correlations with the difference between Congruent and Incongruent trials (in accuracy, 
criterion and sensitivity) across subjects. Between-subject Welch ANOVAs revealed that none of 
the two Likert survey items significantly differed across experiments (Attention to Sequence: F(2, 
98.18) = 0.91, p = 0.406, η2 = 0.013; Object Prediction: F(2, 97.67) = 0.96, p = 0.388, η2 = 0.012). 
This suggests that participants did not adopt a deliberate strategy of paying more or less 
attention to the scene, or actively trying to predict the object, depending on the probability of the 
prediction being accurate. Interestingly, their estimates of the probability of the object appearing 
with the congruent size did not differ across experiments either (F(2, 98.11) = 0.26, p = 0.774, η2 = 
0.003). Thus, we found no evidence that participants were tracking how often the contextual 
expectation was respected or violated, despite this expectation’s impact on their responses. 
 Moreover, we found no evidence for correlations between the responses to any of the 
survey questions and the behavioral differences in accuracy, criterion, or sensitivity (Table S1). In 
fact, the only correlations between a survey question and behavioral effect that were marginally 
significant (both in Exp. 1: object prediction and Δ accuracy, r = -0.29, p = 0.041, and object 
prediction and Δ sensitivity, r = -0.33, p = 0.021, uncorrected for multiple comparisons) were 
negative correlations. The behavioral effects we found, then, did not seem to depend on 
participants’ awareness of the experimental manipulation. Possible differences in their strategies 
across experiments were then likely automatic, and not the product of conscious deliberation. 

Effect on Accuracy df F p η2p 

Congruency 1, 148 9.42 0.003 ** 0.06 
Probability 2, 148 1.95 0.145 0.03 

Congr. x Prob. 2, 148 1.81 0.167 0.02 

Effect on sensitivity df F p η2p 

Congruency 1, 148 12.57 0.001 ** 0.08 
Probability 2, 148 1.78 0.172 0.02 

Congr. x Prob. 2, 148 1.77 0.174 0.02 

Effect on Criterion df F p η2p 

Congruency 1, 148 41.73 < 0.001 *** 0.22 
Probability 2, 148 0.86 0.424 0.01 

Congr. x Prob. 2, 148 0.48 0.617 0.01 

Table 1: Results of the ANOVA including Congruency and Probability. Significant effects are highlighted 
in boldface. * p < 0.05, ** p < 0.01, *** p < 0.001. 
 
 
 



Discussion 
 
The retinal sizes of objects in the real world depend on the distance from which they are viewed. 
Scene context provides a reference frame to estimate that distance, and changes in the reference 
frame (e.g., while moving) thus have the potential to guide our predictions of object size 
transformations. In the present work, we found that participants responded differently in an 
orthogonal perceptual task, depending on whether an object appeared in a size that was 
expected or unexpected given the scene context. This difference in responses demonstrates that 
they perceived the (in)congruency of the object size, which could only be derived from the shifting 
viewpoint of the scene. Scene context, then, drove the automatic rescaling of object 
representations. 

Further evidence for the automaticity of scene-driven rescaling is the fact that the 
behavioral effects were largely consistent across experiments, even when scene-driven 
expectations were violated on a large proportion of trials. This suggests that the rescaling of 
object representations was primarily driven by long-term expectations derived from regularities of 
the real world, which overruled short-term regularities observed during the experiment. 
Additionally, we found that the effect of congruency on task performance (accuracy, sensitivity, or 
criterion) did not correlate with participants’ reports of paying attention to the contextual 
sequence or explicitly trying to predict the object view, nor to their awareness of the frequency of 
congruent trials (Table S1). The effect of scene context on object representations, then, appears 
to be independent of participants’ conscious behavioral strategy.  
 Interestingly, the effect of scene-driven size expectations in our task reliably resulted in a 
shift of criterion on trials in which the object did not match those expectations. While participants 
were overall slightly biased towards reporting that the two probe views were the same (possibly 
due to the generally small differences between them), this bias was reduced on Incongruent trials. 
That is, they responded ‘different’ more often. A possible explanation for this criterion shift is that 
the size incongruency between the initial and final view of the object was perceived as a change, 
drawing their responses towards ‘different’. Importantly, however, participants were robustly 
above chance in all experiments, as this was a precondition for inclusion in the analysis. This 
indicates that they had not misunderstood the task, and were not actively trying to predict the 
upcoming object size, which would have resulted in chance performance. Predictions of object 
size, instead, seem to have occurred automatically, involuntarily influencing their responses. 
 Expectations also affected perceptual sensitivity, with a reduced sensitivity on Incongruent 
trials. This effect was particularly reliable in Experiment 1 (75% probability), although the 
interaction between probability and congruency was not significant. It is thus possible that the 
effect of congruency on perceptual sensitivity varies according to the task context. One 
perspective is to regard the response interference caused by incongruent object sizes as relating 
to surprise. When incongruent object sizes were rare, as in Experiment 1, incongruent objects 
would be more surprising, potentially reducing participants’ focus on the stimulus features that 
were relevant for performing the main perceptual discrimination task. Interestingly, criterion did 
not show a similar variation across experiments in the present study. In contrast, our previous 
results on mental rotation (Aldegheri et al., 2023) showed a significant interaction between 
congruency and the probability of congruent object views for both criterion and sensitivity. The 
reason for this discrepancy is not clear and may be the result of idiosyncrasies of the stimuli and 
tasks used in the two studies. While both studies are consistent in showing the existence and 
automaticity of object representation transformations induced by scene context, then, the specific 
ways in which these transformations affect task performance might depend on specific features 
of the task. 

The present results support the idea that transformations of a scene context can induce 
coherent transformations of the objects within that scene. This applies to both rotation and 
translation, two rigid spatial transformations that commonly occur in the real world. This is in 
contrast to non-rigid transformations (that alter the shapes of objects), such as squeezing, 
breaking, or melting. Numerous studies have shown that humans are able to predict the 
consequences of such transformations (Kourtzi & Shiffrar, 2001; Hahn et al., 2009; Spröte & 



Fleming, 2016; Spröte et al., 2016; Hafri et al., 2022), suggesting that we can simulate them in our 
minds similarly to rigid transformations. In the real world, however, the dependency between 
objects and their context is less clear for non-rigid transformations. Transformations like breaking 
into pieces, or being bent out of shape, tend to affect single objects in a scene, and they are 
usually caused by agents or other objects rather than by a global transformation of the entire 
scene. The representations of interactions between objects that result in rigid and non-rigid 
transformations, then, might be qualitatively different. For example, rigid transformations can be 
represented hierarchically, with the transformation of a scene affecting its objects, and the 
objects’ transformation affecting their parts in turn (Hinton & Parsons, 1981; Hinton, 1990; 
Gklezakos & Rao, 2022; Hinton, 2023; Fisher & Rao, 2023; Shewmake et al., 2023). Such a 
hierarchical representation might be less suited for non-rigid transformations, in which the 
dependencies between objects and their parts are more complex. When an object breaks, for 
example, not all of its parts are affected equally, and the way they are affected largely depends on 
the interaction that caused the breaking (e.g. the object falling on the floor, or being hit with a 
hammer). It is possible, then, that rigid transformations affecting a scene and its parts are 
represented hierarchically, while interactions such as breaking or squeezing are represented in a 
‘flat’ manner, with individual objects in a scene influencing each other. Prior work has found 
evidence for such representations of physical or social interactions between objects or agents 
(Hafri & Firestone, 2021; Little & Firestone, 2021; Little & Gureckis, 2023; Malik & Isik, 2023). 
Future research should clarify the differences in how these disparate interactions are represented 
in human visual perception, to elucidate the nature of our internal models of the physical world. 

The present results provide additional evidence that predictions of spatial transformations 
can be driven by contextual information, rather than purely internal operations. In our previous 
studies (Aldegheri et al., 2023, 2025), we found that mental rotation, a widely studied mental 
transformation, could be driven by the changing viewpoint of a scene. Here, we find that this 
generalizes to mental translation. These findings raise the question of whether the context-driven 
transformations that we observed involve similar representations as those implicated in more 
classic purely-internal transformations of isolated objects. Voluntary mental transformations of 
isolated objects are believed to involve the manipulation of image-like representations (Cooper & 
Shepard, 1973; Shepard & Cooper, 1982; Koriat & Norman, 1984, 1988; Stewart et al., 2022). One 
possibility is that the context-driven transformations we observed in our studies also involve the 
creation of a ‘mental image’ of the object at the congruent orientation or size. An alternative 
possibility is that, instead, what was transformed along with the scene was a spatial reference 
frame. According to this account, the changing scene context establishes a set of spatial 
coordinates along which the position and orientation of objects can be represented. Graf (2006) 
reviews a series of findings indicating that human observers can mentally transform spatial 
coordinate frames, facilitating the perception of objects which are oriented, translated or scaled 
consistently with them. For example, recognition of objects in a specific orientation (Graf et al., 
2005) or size (Larsen & Bundesen, 1978) is facilitated after the observer has seen other objects 
with the same orientation or size. Contextual information, then, can help establish spatial 
reference frames which generalize across objects. Crucially, these reference frames can also be 
determined by scene context (Hinton & Parsons, 1988; Humphrey & Jolicoeur, 1993; Christou et 
al., 2003), suggesting that scene transformations in our study might be influencing object 
representations through a similar mechanism. If this is the case, then what is being updated 
behind the occluder is not a mental image of the entire object, but an abstracted representation of 
its scale or orientation. This would be consistent with results from visual object tracking under 
occlusion, which show that only the location of the object, and not other features, are tracked 
behind the occluder (Scholl & Pylyshyn, 1999; Teichmann et al., 2022). A possible way to 
distinguish between an image-like and a purely spatial representation would be to determine 
whether the behavioral effect of size or orientation (in)congruency generalizes across objects. If a 
different object (e.g., a bed instead of a couch) reappeared after the occlusion, would it make any 
difference to performance in an orthogonal task if its size or orientation were (in)congruent? If only 
a spatial reference frame was being updated with the scene, we would expect the behavioral 
effect of spatial (in)congruencies to generalize across objects, as observed in previous studies 
(Graf et al., 2005; Larsen & Bundesen, 1978). If, on the other hand, subjects were updating a 



picture-like representation of the object behind the occluder, a different object would be 
perceived as ‘incongruent’ regardless of its size or orientation. Further research is needed to 
distinguish between these two hypotheses. 

In conclusion, the present results show that scene viewpoint information can automatically 
drive predictions of object size - or translation in depth. These findings generalize our previous 
results using rotation, thereby suggesting that scene context drives dynamic predictions of object 
appearance across a range of transformations. These predictions affect responses in an 
orthogonal behavioral task, even when they violate short-term expectations, pointing toward the 
automaticity of such predictions based on real-world regularities. Scene context, then, might play 
a general role in providing a reference frame for different mental transformations of objects. Given 
the highly structured nature of our everyday environments, this might be an important mechanism 
supporting our interaction with objects in naturalistic vision. 
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Exp. 1  -  P(Congruent) = 75%

** *** ***

Accuracy Sensitivity Criterion
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Exp. 3  -  P(Congruent) = 25%
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Figure S1: Results of the three experiments without any participant exclusions based on performance. 
For each experiment, mean (and SEM) accuracy, d’ and criterion are reported for the Congruent and 
Incongruent conditions. ** p < 0.01, *** p < 0.001. 



  

Figure S2: The four different scene exemplars used in the study. Each scene is shown with the object 
in the ‘near’ (top) and ‘far’ (bottom) initial position. See main text for details. 



 Experiment 1 
P(Congruent) = 75% 

Experiment 2 
P(Congruent) = 50% 

Experiment 3 
P(Congruent) = 25% 

Attention to Sequence 
1-7 Likert scale 4.42 ± 0.19 4.30 ± 0.21 4.02 ± 0.23 

Correlation with Δ accuracy r = 0.17, p = 0.23, BF01 = 2.79 r = 0.03, p = 0.83, BF01 = 5.55 r = -0.09, p = 0.52, BF01 = 4.67 

Correlation with Δ sensitivity r = 0.13, p = 0.38, BF01 = 3.89 r = 0.05, p = 0.71, BF01 = 5.29 r = -0.11, p = 0.46, BF01 = 4.39 

Correlation with Δ criterion r = 0.07, p = 0.62, BF01 = 5.05 r = 0.04, p = 0.75, BF01 = 5.40 r = 0.05, p = 0.74, BF01 = 5.43 

Object Prediction 
1-7 Likert scale 3.53 ± 0.24 3.76 ± 0.22 3.31 ± 0.24 

Correlation with Δ accuracy r = -0.29, p = 0.04, BF01 = 0.74 * r = -0.06, p = 0.67, BF01 = 5.21 r = 0.09, p = 0.53, BF01 = 4.74 

Correlation with Δ sensitivity r = -0.33, p = 0.02, BF01 = 0.42 * r = 0.02, p = 0.86, BF01 = 5.59 r = 0.10, p = 0.48, BF01 = 4.50 

Correlation with Δ criterion r = 0.04, p = 0.79, BF01 = 5.40 r = 0.17, p = 0.23, BF01 = 2.85 r = -0.19, p = 0.19, BF01 = 2.50 

Probability Estimate 
Percentage 56.96 ± 2.45 54.50 ± 2.39 55.84 ± 2.94 

Correlation with Δ accuracy r = 0.03, p = 0.83, BF01 = 5.55 r = -0.11, p = 0.43, BF01 = 4.18 r = -0.02, p = 0.91, BF01 = 5.68 

Correlation with Δ sensitivity r = -0.03, p = 0.83, BF01 = 5.55 r = -0.13, p = 0.37, BF01 = 3.86 r = 0.04, p = 0.76, BF01 = 5.46 

Correlation with Δ criterion r = -0.06, p = 0.69, BF01 = 5.26 r = 0.10, p = 0.48, BF01 = 4.44 r = -0.12, p = 0.38, BF01 = 3.95 

 

Table S1: Mean responses (and SEM) to our final survey questions, and Pearson’s r correlation with 
the behavioral effects (Congruent – Incongruent trials) for both criterion and d’. * p < 0.05 (uncorrected 
for multiple comparisons). 

 


