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Abstract

Rapid Invisible Frequency Tagging (RIFT) is a recent advance in frequency tagging that exploits novel, high-frequency
displays to modulate luminance at imperceptibly high frequencies. RIFT goes beyond low-frequency tagging by allowing
researchers to track neural responses to rhythmic stimulation while avoiding perceptual confounds. RIFT is thus a
promising method to address central questions in cognition, including attention, multimodal integration, and the
neural mechanisms underlying oscillatory coordination in perception. However, setting up a RIFT study involves several
technical and conceptual considerations. In an effort to make RIFT more accessible, we provide a comprehensive
guide for implementing RIFT in cognitive neuroscience. On the basis of the joint experiences and data-driven insights
of multiple labs, we provide practical recommendations derived from empirical datasets to improve reproducibility,
covering hardware requirements, stimulus design, analysis approaches, and interpretation of results. We hope that
this guide helps readers to both identify the conceptual areas where RIFT offers promising insights and navigate the
technical caveats that come with the approach.



1 Introduction

Rhythms are omnipresent in our brain and environment,
and shape how we attend to, perceive, and integrate in-
formation. In cognitive neuroscience, a fundamental chal-
lenge lies in the way we measure how rhythmic neural
activity relates to ongoing cognitive processing without in-
terfering with perception itself.

Frequency tagging has been a widely-used stimulus pre-
sentation method within the field of cognitive neuro-
science (Norcia et al, 2015). In short, it involves varying
a specific property of a stimulus (e.g., luminance) at a fixed
frequency. This rhythmic modulation induces a neural re-
sponse at the same frequency, called Steady-State Evoked
Potentials (SSEPs). Because this response is frequency-
specific, it provides a powerful marker of how the brain
processes the tagged stimulus over time. Frequency tag-
ging has therefore been widely used to study attention
(e.g, spatial attention (Morgan et al,, 1996 Miller & Hib-
ner, 2002), feature-based attention (Muller et al., 2006; Pei

@ Luminance is rapidly flickered at multiple unique frequencies,
fast enough (>60Hz) to appear static to the naked eye

etal, 2002), perceptual selection, and multimodal integra-
tion (Alp et al, 2018; Regan & Regan, 1988).

Recent advances in display technology have given rise to
an innovative new branch of frequency tagging: Rapid In-
visible Frequency Tagging (RIFT). Unlike low-frequency tag-
ging, which typically flickers stimuli at frequencies be-
low 30Hz, RIFT flickers stimuli at frequencies higher than
60Hz (Seijdel et al, 2023; Zhigalov et al, 2019), allow-
ing the tagging to become virtually imperceptible (Figure
1). RIFT therefore provides several advantages over exist-
ing SSEP applications. Firstly, at lower frequencies lumi-
nance changes are visible. This makes them easily iden-
tifiable, and they may automatically draw attention (Cass
et al, 2011). RIFT, by flickering complex stimuli beyond the
threshold of visibility, offers a tracker of visual process-
ing without perceptual interference. This results in more
naturalistic paradigms where the spatial spread of atten-
tion can be continually measured without any awareness
of this probe. Another major benefit is that RIFT can mea-
sure the allocation of attention to locations which appear
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Figure 1: Rapid Invisible Frequency Tagging. The luminance of stimuli or areas on the screen is modulated
sinusoidally at frequencies that exceed the threshold of perception. The response to these tags can then be
uniquely recovered in the M/EEG response, and its amplitude over time can reveal location or feature based
modulations in covert attention. Thus, RIFT forms a non-invasive, continuous tracker of attention in the absence

of any visible probes.



indistinguishable from background space. In doing so, it
offers a qualitatively different tool for studying relatively
difficult-to-measure cognitive processes that occur in the
absence of any stimuli. Lastly, in the low frequency range
(<30Hz), SSEP responses may be difficult to disentangle
from endogenous oscillations in similar frequency bands,
or may even entrain or disrupt them (Notbohm et al., 2016;
Spaak et al, 2014). The RIFT response does not interact
with endogenous oscillations: its typical frequencies are
far away from lower bands such as alpha (Arora et al., 2025;
Gutteling et al,, 2022; Zhigalov & Jensen, 2020), and even
spectrally close oscillations such as gamma are not en-
trained (Duecker et al., 2021).

RIFT is essentially a tracker of visual processing, used
most frequently as an invisible tracker of covert atten-
tion. Given the large range of cognitive phenomena that
involve covert attention, RIFT has the potential to produce
novel insights for a variety of cognitive fields, For example,
RIFT has shown to be a powerful tool to capture spatial
shifts of attention both to tagged stimuli (Zhigalov et al,
2019), as well as to tagged, but perceptually indistinguish-
able regions of visual space (i.e, tagging the background;
Arora et al., 2025). Over the last few years RIFT has been
applied within the domains of reading (Pan et al, 2021,
2024), distractor suppression (Ferrante et al, 2023), visual
search (Bouwkamp et al,, 2025; Duecker et al.,, 2025), visual
working memory (Arora et al, 2025), brain-computer in-
terfacing (Brickwedde et al,, 2022), multimodal integration
(Drijvers et al.,, 2021; Seijdel et al., 2024) and the interaction
between speech planning and comprehension represen-
tations (Husta et al, 2025). Aside from exploring novel
cognitive contexts that may benefit from using the tech-
nique, current RIFT research is also focused on technical
aspects such as optimizing display features (Minarik et al,,
2023) and exploring alternate forms of tagging (Spaak et
al., 2024).

In sum, RIFT has proven to be a sensitive method for track-
ing neural responses and their modulation by cognitive
demands, and previous work shows clear and promising
potential for RIFT within cognitive research. However, the
method also introduces novel technical and analytical
considerations that are not yet widely documented.

In this perspective we consolidate the joint experiences
and data-driven insights of multiple independent labs to
provide a comprehensive guide with resources and rec-
ommendations for running a RIFT study. We describe best
practices for 1) hardware requirements, 2) experimental
design and stimulus presentation, and 3) analysis of the
neural response. This manual primarily compiles pre-

viously undocumented knowledge acquired through the
setup and operation of new RIFT laboratories, as well as
through in-depth exploration of technical aspects of pre-
viously collected RIFT datasets. Our goal is to make RIFT
more accessible to researchers across various fields, and
to highlight how RIFT can contribute to the study of rhyth-
mic cognition across domains.

2 Hardware Considerations

21 Why does RIFT require devices with fast
refresh rates?

An important feature of RIFT is that visual stimuli are
tagged above the threshold of perceptibility (>60 Hz).
Achieving this requires specialized display tools with high-
speed refresh rates that go beyond the refresh rates avail-
able in standard monitors.

Conventional monitors, typically running at up to 120 Hz,
are ill-suited for several reasons. Firstly, a 120Hz monitor
can only produce a 60Hz RIFT tag, by alternating between
black and white on each frame However, given that RIFT
is mainly used as a tracker of spatial attention, most cog-
nitive questions using RIFT depend on contrasting the
attentional resources dedicated to different locations in
the same visual environment. Thus, RIFT studies often use
two or more high-frequency tags simultaneously, for ex-
ample 60Hz and 64Hz (Arora et al, 2025), or 60Hz, 64Hz,
and 68Hz (Bouwkamp et al, 2025), which a 120Hz monitor
is not capable of doing. Secondly, standard monitors are
not normally designed to be able to shift through their full
luminance range (black - minimum, to white - maximum)
during the short interval between two consecutive frames.
Our own personal experiments demonstrated that stan-
dard monitors have trouble doing so, leading to visible
tagging modulations on the screen. Though the tagging
could also use a lower luminance range (e.g, flicker from
grey to black) if a monitor is incapable of using its full
luminance range quickly, this has been shown to weaken
the tagging response (Spaak et al, 2024). Lastly, even if
perfect control of luminance at 120Hz is achieved, there
is a stark difference between the resulting step-function
luminance trace achievable at a 120Hz refresh rate and
the sine-approaching traces achievable at higher refresh
rates. The latter avoid sudden and large jumps in lumi-
nance (Figure 2), resulting in much reduced visibility of
the luminance oscillation. Indeed, it has been shown that,
when using 120Hz refresh rates, even 60Hz oscillations are
visible (Waldin et al., 2017). However, with rapid refresh
rates (i.e., 1440Hz) the 60Hz tag has been experimentally
shown to be invisible (Spaak et al., 2024).
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Figure 2: Higher refresh rates more closely reflect sinusoidal modulations of luminance.
2.2 Which devices can accomplish this? More recently, newer commercially available OLED moni-

tors operating at 480 Hz have emerged as a viable alterna-
tive, by using fast pixel response times, which increases ac-
cessibility (Dimigen et al., 2025). Early evidence exists that
demonstrates that these consumer-grade monitors pro-
duce robust RIFT responses. We therefore believe that as
the use of RIFT becomes more widespread, this monitor
option will soon be more utilised. Thus, our discussions
and suggestions below are general to any device and re-
fresh rate (with the exception of Box 1).

Nearly all RIFT research so far has made use of a PROPixx
DLP projector (VPixx technologies), which supports refresh
rates up to 1440 Hz (if using greyscale) or 480Hz (if colour is
used). PROPixx circumvents the bandwidth limitations of
graphics cards by repackaging multiple frames into each
input image (see Box 1), allowing for imperceptible rhyth-
mic stimulation at a precision that is unmatched by stan-
dard hardware. However, given the expenses associated
with this option, it is worth exploring viable alternatives.

Box 1. How does the PROPixx projector achieve higher-than-GPU refresh rates?

he core limitation overcome by the ProPixx projector is not merely high-speed display, since LED displays can also
display rapidly changing visual luminance. In order to display complex stimuli, the display tool must be paired with
a graphics card that can produce frame-by-frame images quickly enough to keep up with a fast display rate. The
ProPixx takes away this requirement. That is, the graphics card being used can simply operate as if it was connected
to a simple 120Hz refresh rate device, but the projector is able to convert this input to a much faster refresh rate
(480Hz if using colour, 1440Hz if not using colour).

The ProPixx achieves this by allowing the user to “pre-package” up to 12 frames worth of information within a
single image. For a normal monitor/PC setup, the graphics card sends out a frame which the monitor then displays.
Thus, for a 120Hz monitor setup, 120 images are displayed per second (Figure 3A). The projector is able to achieve
a higher refresh rate with the same input speed (120 images per second) from the graphics card. First, it divides
the image received from the graphics card into four equal quadrants. Each of these quadrants is then sequentially
displayed (Figure 3B). This quadruples how many images the projector can display per frame sent by the graphics
card (each with half the pixel resolution), resulting in a 480Hz refresh rate. This means that any image which is
intended to be drawn at one point on the screen, must actually be drawn at four different locations (the centers of
each of the four “quadrants”) which are offset in different directions from the true center of the image. Here we
include code (quadifier.m) compatible with MATLAB-Psychtoolbox that carries out this operation by converting
coordinate information from a screen-centered reference to a quadrant-centered reference.

This refresh rate can then further be tripled to achieve a 1440Hz refresh rate for grayscale images. For this,
the three color channels (Red, Green, and Blue) that normally add up to produce one color image can be used
to transmit three unique images (Figure 3C) which are then displayed in sequence. In this way, the projector can
display three frames per quadrant, resulting in twelve total images per frame sent by the graphics card (Figure 3D).



Show a ball moving from left to right while going from light to dark.

STANDARD MONITOR (only one image is generated per input frame)

Input: One frame at 120fps

Output: One frame at
120Hz, same as input

PROPIXX PROJECTOR (4 or 12 images are generated per input frame) D

(Change in display only
occurs during the next frame)
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Figure 3: Operation of the PROPixx projector. When connected to a 120fps PC input, A. a standard monitor
displays one image for each frame. In the same time, the PROPixx projector can display either B. 4 images
by splitting up the frame into quadrants and displaying them sequentially, producing a 480Hz output, or, C.
12 images by further splitting the R, G, and B colour channels of the frame to produce three images per each
of the four quadrants, D. resulting in a 1440Hz framerate. Note that the input from the PC has to be encoded
specifically to produce the desired output after quadrant-splitting and RGB-splitting.

2.3 Components of a RIFT Setup

The main hardware component of a RIFT setup is the high-
refresh display device (see Section 2.2). Because of the
low demands the PROpixx projector places on the graph-
ics card itself (Box 1), the projector setup has relatively
lenient graphics card requirements. Our setups utilize
relatively inexpensive graphics cards (e.g., NVIDIA Quadro
K620 2GB, GeForce GTX960 2GB, and Radeon RX570 8GB).
The GPU requirement is considerably higher when using a
high refresh-rate monitor for RIFT instead of the PROpixx
projector (Dimigen & Stein, 2024; Dimigen et al., 2025).

Irrespective of which device is used for RIFT, a photodi-
ode (luminance sensor) is essential for identifying and
verifying that the intended modulation is faithfully dis-
played. Even timing errors on a millisecond-level can shift
the phase of the frequency-tagged signal, undermining ex-
perimental precision. For example, with a 60Hz tag (1 cycle
= ~16.6ms), an 8ms delay would put the tagging signal in
anti-phase, so even a 1ms delay will have a notable im-
pact, and thus accounting for these inaccuracies becomes
critical.

3 Stimuli and Experimental Design
Considerations

3.1 Which frequencies are best to use for
tagging?
3141 Theoretical Range

With RIFT, we measure neural responses to imperceptible
periodic stimulation. This definition leads to two auto-
matic (theoretical) thresholds for RIFT frequencies. The
first is @ maximum frequency above which the response
to periodic stimulation is no longer observed in the M/EEG
signal. The second is a minimum frequency below which
the flicker is visible. Previous work has used LED-based
displays to investigate the periodic neural response to
flickers in the 1-100Hz range (Gulbinaite et al, 2019; Her-
rmann, 2001), from which a rough threshold of around 80Hz
emerges as an upper limit (Minarik et al., 2023). On the
other hand, mean estimates of the critical flicker-fusion
threshold tend to be close to 50Hz but vary between 30-
60Hz depending on numerous individual factors and cog-
nitive states (Haarlem et al,, 2024). Thus, for visual tagging,



Study Topic Tagged Stimuli Refresh Tag Type & | Tag Duration | Stimuli(# / Size / Loc.)
Rate (Hz) | Freq. (Hz) (ms)

Zhigalov et al., 2019 Attentional effect on | Photos of faces and | 1440 63,78 1500 2 [ -/ 8.3° eccentricity,

cortical excitability houses below midline

Zhigalov et. al,, 2020 Alpha oscillations and | Photos of faces and | 1440 60-70 (broad- | 2000 2/ 57° | 3.8° eccen-

spatial attention houses band tag) tricity, below midline

Drijvers et al., 2021 Multimodal integration | Auditory verbs, gesture | 1440 A:61,V:68,IM:7 | ~2000 avg 2 /10°x6.5° / Midline
video

Duecker et al,, 2021 Entrainment of gamma | Background, circular | 1440 52-90 (2Hz | 2000 1/2.62° | Center
moving gratings steps)

Gutteling et. al,, 2021 Attentional gating via | Clear or degraded pho- | 1440 63,70 2350 - 3350 2/ 8° | 7° eccentricity,

alpha-band oscilla- | tos of faces below midline
tions

Pan et al,, 2021 Parafoveal processing Background under the | 1440 60 1000 1/ ~2-3°x1° [ Midline
target word

Brickwedde et al., 2022 BCl control via covert | Section of background | 1440 V: 56, 60 2000 (train); | 2 / - / Bilateral below

attention with grainy texture continuous midline
segmented to
1000 (test)

Ferrante et al,, 2023 Statistical learning of | Gabor patches 480 55-75 (broad- | 1500 (filler) + | 2 / 6°x6° [ 4° eccen-

distractor location band tag) 300 (search) tricity in all quadrants

Minarik et al., 2023 Optimal tag parame- | Background section 1440 66 - freq. | 1400 + tapers 1/ 10° / Center - size

ters examining: 1) tag- varied for 1) varied for 2) 2-12° in

ging freq., 2) stim. size, between  60- 1° steps - pos. varied

3) stim. position 100 (4Hz steps) for 3) midline, above,
or below

Bouwkamp et al., 2025 Predictive visual | T+ L distractors 1440 60, 64, 68 <2500 3/ 2.5°x2.5° [ variable

search (within 11°x7.5°)

Pan et. al,, 2024 Parafoveal  semantic | Background under the | 1440 60 1000 1/ ~2-3°x1° [ Midline

processing in reading target word

Seijdel et al., 2024 Multimodal  integra- | Auditory verbs, ges- | 1440 A: 58, V-att: 65, | ~2000 3/ -/ Midline

tion; attention tures V-unatt: 63, IM:
57
Spaak et al., 2024 Optimal tag parame- | Circular gratings 1440 60, 66 1200 or 1500 1-2 [ 2°-4° [ Midline,
ters examining: 1) im- above, or below
perceptibility, 2) type
of tagging, 3) account-
ing for phase shifts
Arora et al, 2025 Internal vs. External | Color gratings, Back- | 480 60, 64 Continuous 2/ 6° [ 6° eccentricity,
Attention ground 2° below midline
Husta et al,, 2025 Planning speech dur- | Auditory nouns, pic- | 1440 A: 54, V: 68, IM: | A: ~877,V:1000 | 2/ 71°x84° | Center
ing comprehension tures 14

Duecker et al., 2025 Guided visual search T + L distractors 480 60, 67 <4000 17 or 33 / 1°x1° / vari-

able (within 10°x10°)

Dietz et al., 2025 Temporal expectations | Square-wave gratings 480 60 Whole trial | 1/ 6° / Center

(<3800)

Wang et al., 2025 Attentional capture Geometrical  shapes | 480 60, 64 1300 6 | 43° x 43° | 6°
(singleton targets + eccentricity, in circular
distractors) shape

Dimigen et al,, 2025 RIFT  on consumer | discstimulus matching | 480 (on | 60, 64 10000 1/ 2.55° +tapers | Cen-

monitor background OLED ter or Periphery at 12°
monitor)

Duecker et al., 2025 Role of alpha in visual | T+ L distractors 480 60, 67 Variable 170r33/-/-

search

Table 1: Overview of topics and tagging parameters in existing RIFT research. Notes: A = Auditory tagging; V

= Visual tagging; IM = Intermodulation frequency. Where not specified,

u n

applicable. Tag location and stimulus size are reported in degrees of visual angle (dva).

indicates data not reported or not



the flicker appears visible to most people below 50Hz. This
allows us to set a (conservative) theoretical RIFT tagging
range of 60-80Hz in the visual domain. RIFT has also been
implemented slightly below this range at 56Hz (Brickwedde
et al, 2022), and similar tagging protocols have been ap-
plied at even lower frequencies (41-45Hz; (Marshall et al,
2024)), though here invisibility was not verified.

Beyond this range, there are a number of technical aspects
to consider that produce a more limited set of frequency
options in practice.

31.2 Higher frequencies evoke lower responses

It is worth noting that even though all frequencies within
the theoretically plausible range (~60Hz-80Hz) have been
shown to evoke a periodic response, this response de-
creases in strength as the frequency increases (Gulbinaite
et al,, 2019; Herrmann, 2001). An upper limit of 72Hz has
been suggested for observing tagging in 90% of the partic-
ipant pool, above which this percentage decreases quickly
(Minarik et al, 2023). A summary of the stimuli and fre-
quencies utilized in previous RIFT studies is summarised
in Table 1.

A. B60Hz tog (at 480Hz refresh, no phase offset)

31.3 Sampling

When sinusoidally modulating luminance to display a
tagged stimulus, the choice of tagging frequency and
phase can lead to the presentation of imperfect sine
waves, which can in turn result in dynamic luminance
range being underutilized by the tagging. A ‘perfect’ tag,
i.e., one that only stimulates the intended frequency with-
out introducing any harmonics or other low-frequency
components, would always capture the same values on the
sinusoid for every cycle including the high and low peaks
(e.g, Figure &4A). This, however, is only possible when the
tagging frequency is a factor of the refresh rate, in this ex-
ample a 60Hz (480Hz / 8) tag. If the refresh rate is not an
integer multiple of the tagging frequency, an artifact will
arise because the peaks and troughs of the true sinusoid
are not sampled regularly (e.g., Figure 4B), in this example
a 61Hz (480Hz / ~7.86) tag. Similarly, if the sinusoid being
sampled has a phase offset such that no frames sample
its peak or troughs, even a ‘perfect’ tagging frequency can
miss out on the full dynamic range of luminance (e.g., Fig-
ure 4C). Such sampling issues can be avoided entirely by
simply using frequencies that are an integer factor of the
refresh rate (480Hz/8 = 60Hz, 480Hz/7 = 68.57Hz, 480Hz/6
= 80Hz) at the appropriate phase offset to ensure that the
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Figure 4: The choice of tagging frequency and phase can lead to presentation of imperfect sine waves. A.
When drawing a 60Hz tag at a 480Hz refresh rate, 8 (480/60) luminance points are equally sampled on each
cycle and perfect sampling is observed if the phase is aligned to the sinusoid’s peaks. B. When drawing a 61Hz
tag at the same refresh rate, every cycle does not have the same sampling of luminance points, and C. When
drawing a 60Hz tag at the same refresh rate but a different phase offset, the peaks are not sampled uniformly
thus under-utilizing the dynamic range of the tagging.



peaks of the sinusoid are sampled. This factor then equals
how many points are sampled on each cycle, for example
8 points per cycle for a 60Hz tag. Though experimental
constraints may result in cases where it is preferable to
sacrifice a small amount of dynamic range in order to use
a larger number of unique frequency tags, this route offers
a starting point for frequencies to select in the absence of
any other limitations. These concerns are less pressing in
cases of very high refresh rates, such as the 1440 Hz capa-
bilities of a PROpixx projector.

3.2 Whatneeds to be considered when tagging
multiple stimuli?

RIFT studies commonly implement multiple tags to track
visual processing of multiple stimuli or locations simulta-
neously. This involves some extra considerations.

3.21 Spectral overlap

Any time series analysis involves a trade-off between fre-
quency resolution and temporal resolution: improving
precision for one reduces precision for the other.
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Figure 5: A. When using multiple tags, temporal resolution is limited due to overlap effects. To maintain high
temporal resolution, frequency resolution must be sacrificed. However, when using multiple tags, this is not
possible beyond a limit due to overlap between the responses from both tags. B-D. Phase can be used to
avoid overlap effects across multiple tags. B. To avoid these overlap effects, trials can be presented with
tagging envelopes initialized at random phases. C. Trials can then be separately analyzed by skewing to align
the phases of one tag at a time. D. This results in independent isolation of each tagging signal without the
contribution of the other using coherence. Data averaged across 23 participants from Dataset 2.



For studies looking at RIFT modulations over time, it is
ideal to have high temporal resolution (and thus low fre-
quency resolution). However, when tagging multiple stim-
uli at unique frequencies, frequency resolution cannot be
too low because both tags must remain distinguishable.
To illustrate this, we show how the mean discriminability
of two frequency tags varies with parametrically modu-
lated frequency resolution (Figure 5A). Here, the periodic
response is measured using filter-HT derived coherence
(a technique to extract the amplitude of the oscillatory
signal, explained further in Section 4.1).

It is possible to leverage tagging phase to increase the
separability of different tags. Instead of maintaining a
constant phase onset across trials that is also identical
among different stimuli, the tagging signals can instead
be offset by a random amount for each stimulus and each
trial. Then, different tagging signals can later be separately
analyzed from the same data without interference from
one another (Figure 5A) by epoching the data separately
such that the epochs are phase-locked with respect to only
one particular signal at a time (Figure 5B). All other tags
will still remain scrambled in phase, and a measure such
as coherence which relies on phase consistency will thus
discount their contributions (Figure 5C). It is worth noting
that using this procedure prevents the use of phase as
a tagging information channel (see Section 3.5.1 for more
about phase tagging).

3.2.2 Counterbalancing

Counterbalancing tagging frequencies across participants
- or, if possible, across trials — is important to avoid
confounding frequency-specific effects with experimental
conditions. Since higher frequencies elicit weaker neural
responses, unique frequency tags are treated as different
“channels” of information. To make meaningful compar-
isons across conditions, frequency-condition assignments
can be balanced across participants, or better yet, within
participants. Here, ‘condition’ can refer to many feature
dimensions such as stimulus type, location, shape, etc.
Trial-level counterbalancing is especially powerful, as it
controls for individual differences and increases sensitivity
to condition-specific effects. However, it does reduce the
available number of trials in each condition for measures
such as coherence (see Section 4.1) which operate on a set
of trials.

3.3 Whatneeds to be considered when tagging
grayscale vs. coloured stimuli?

When tagging a stimulus, its intensity is modulated sinu-
soidally; practically this involves multiplying some “lumi-
nance feature” of a stimulus with a time-varying sinusoidal

envelope. Luminance can be tagged in various ways. For
example, when tagging black and white gratings, it has
been shown that modulating the white bands across the
full luminance range (0-100%), or using contrast tagging
(i.e., anti-phase flicker to white and black bands), produce
a stronger response than other alternatives (Spaak et al,
2024). Furthermore, we have seen that applying a white
luminance mask over the stimuli yields robust tagging
responses, whereas modulating stimulus opacity to fade
stimuli in and out against a grey or textured background
results in markedly weaker tagging signals (unpublished
data).

Most design tools for psychophysics experiments directly
use RGB colour codes when drawing stimuli. If a grayscale
object is tagged, it is most straightforward to use this RGB
colour code as the luminance feature that is sinusoidally
modulated over time. However, when tagging coloured
objects, it is better to modulate a feature that explicitly
represents luminance to ensure that modulation targets
luminance directly without unintentionally altering color
balance. This can easily be achieved by converting the
RGB colour code to a perceptually uniform colour space,
such as CIELAB, which includes a luminance dimension.
This luminance component can then be multiplied with a
sinusoidal envelope to produce the time-varying tagging
amplitude. Finally, these scaled values can be converted
back to RGB for drawing the stimulus.

Lastly, it should be noted that tagging colour affects the
available dynamic tagging range of luminance. Tagging
from 0% luminance (black) to 100% luminance (white)
produces a grey tag. Since the luminance of any other
colour falls somewhere within this range, tagging other
colours reduces the fraction of the luminance range that
is sinusoidally modulated. The more perceptually dis-
tinct colours (that are equivalently tagged) are required,
the lower this possible range gets. Thus, tagging sev-
eral colours equally comes at some cost to the luminance
range, which then translates into a cost to the tagging
amplitude in the neural response (Spaak et al,, 2024).

3.4 Best practices to avoid visibility of the
tagging

In addition to using a high tagging frequency (>60Hz), there
are other parameters that heavily influence how “invisible”
the tagging is. Consider a tagged patch of background that
is beyond an individual's critical flicker-fusion threshold,
in that the luminance oscillation itself is invisible. Since
this stimulus is presented against a static background, very
abrupt shifts of luminance are produced at the border of
the tagged region when the tagging cycle is at extreme
values (grey background - white tagging area, grey back-



ground - black tagging area). Over time, this is not a con-
cern since the luminance changes are too fast to be per-
ceived. However, during eye movements, the invisibility of
the tag is compromised. A faint boundary becomes mo-
mentarily visible around the tagged region, likely due to
saccadic suppression (Krekelberg, 2010). One simple op-
tion to reduce this boundary detection is to place a visible
outline around the tagged area, since this tagging bound-
ary is then masked by an actual physical boundary. How-
ever, if the goal is to invisibly tag an area that is perceptu-
ally indistinguishable from a static background, then this is
notan option. Inthat case, a transparency mask (Minarik et
al., 2023) can be applied to the edges of the tagged region
to produce a smooth edge that is not detected as a clear
boundary between tagged and untagged regions. Similarly,
to reduce visibility resulting from a sudden tagging onset
or offset, the tagging may be ramped-up or ramped-down
at the ends of the tagging interval (for e.g, 200ms ramp-
up and ramp-down periods as used by (Minarik et al., 2023);
but we have also used periods as low as 50ms). Regardless
of such precautions, it is ideal to empirically confirm the
luminance modulation being imperceptible. This can ei-
ther be done beforehand by means of a pilot experiment,
or alternatively by informing the participants in advance
that they may see certain flickers or glitches during the
experiment and conducting an appropriate questionnaire
afterwards to see if they perceived any such effects (Arora
etal, 2025; Drijvers et al,, 2021; Pan et al,, 2021; Seijdel et al.,
2024).

3.5 Alternative forms of tagging

In this perspective, our suggestions and discussions of RIFT
focus on periodic stimulation at specific frequencies, using
frequency alone as a channel through which separate tags
can be achieved. This approach is the standard taken in
almost all existing RIFT work (see Table 1). However, there
are also alternative tagging approaches, varying in how ex-
tensively they have already been explored in combination
with RIFT.

3.5.1 Phase tagging

One alternative involves a different feature of oscillations:
phase. Instead of creating only one channel of informa-
tion for a given tagging frequency, by modulating phase
it is possible to achieve multiple channels of information
(multiple tags) per tagging frequency (Spaak et al, 2024).
This is achieved by tagging separate stimuli or locations
at the same frequency, but at some phase offset that is
maintained consistently over time and/or trials. This con-
sistency allows the neural responses at that frequency
to later be disentangled and attributed to the uniquely
phase-locked tags. Though unique frequency tags have
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separate response profiles and thus cannot be compared
to each other and must be counterbalanced (see Section
3.2.2), two phase tags at the same frequency can be directly
compared. Given that the frequency range within which
RIFT is possible is rather small (See Section 3.1), this ap-
proach also offers a promising avenue for maximizing the
number of RIFT tags that can be used simultaneously.

3.5.2 Broadband and noise tagging

In broadband tagging, as opposed to stimulating at one
specific frequency, the stimulation used contains periodic
components at a range of frequencies (for e.g., 55-75Hz
broadband tagging as used in (Ferrante et al, 2023)). A
similar alternative comes from the Brain-Computer Inter-
face (BCl) literature in the form of Code Modulated Visual
Evoked Potentials (c-VEPs), also referred to as noise tag-
ging (Martinez-Cagigal et al, 2021). The central idea here
is the modulation of luminance using a fully random or
pseudorandom temporal sequence instead of a sinusoidal
sequence orasequence limited to a small frequency range.
The strength of the neural response to this signal can then
be recovered by correlating the M/EEG signal over time
with this luminance sequence. c-VEPs, like SSVEPs, form
an already established field of visual stimulation. How-
ever, the advent of RIFT offers a promising future direc-
tion: using devices with high-frequency refresh rates al-
lows for these random luminance sequences to be high-
pass filtered at 60Hz prior to display, resulting in random
sequences that are compatible with c-VEP but also invisi-
ble.

3.6 Intermodulation frequencies and auditory

tagging

As was briefly outlined in the introduction, RIFT can also be
utilized to examine the interaction between two signals,
such as audio-visual inputs, by examining intermodula-
tion (IM) frequencies (Drijvers et al, 2021; Husta et al,
2025; Seijdel et al, 2024). The IM frequency results from
the nonlinear interaction of the base audio and visual tag-
ging frequencies and peaks at the difference and sum of
the two signals interacting (f2+f1; e.g., (Regan et al., 1995)).
The power at the IM frequency is thought to reflect the
strength of nonlinear interaction between the represen-
tations of the two tagged stimuli. When tagging with fre-
quencies above 60Hz, the IM component at f2+f1 exceeds
100Hz and is virtually undetectable in the M/EEG signal.
Consequently, previous studies have focused on analyzing
the IM frequency at f2-f1 (Drijvers et al., 2021; Husta et al,
2025: Seijdel et al, 2024), which is more reliably measur-
able, but falls within the range of endogenous oscillations.
This leads to additional considerations for analyzing IM
frequencies. It is best when the oscillatory results for a



paradigm are known (such as the established behaviour
of alpha oscillations in visual attention paradigms), so the
overlap between the endogenous effects and the (chosen)
IM frequency can be avoided. This further constrains the
selection of the main tagging frequencies. Considering
that with certain paradigms, oscillatory effects are difficult
to avoid, using a condition without tagging (i.e., tagging
baseline) is always advised (see Section 4.2). Additionally,
unpublished data shows that the negative relationship be-
tween frequency and tagging amplitude (higher frequen-
cies generate lower responses) is not necessarily true for
lower IM responses, which allows for selection of a wider
range of tagging frequencies, especially when the main
research question focuses on the IM frequency.

When tagging auditory stimuli to study the interaction
between auditory and visually tagged stimuli, there are
additional considerations beyond those of visual tagging
alone. In particular, the duration of the auditory stimulus
is critical: short audio segments may not provide sufficient
time for reliable frequency tagging. As a result, auditory
tagging has often been restricted to longer words (>700
ms). Moreover, the tagging should be applied offline to
the audio stimuli before the experiment, so that tagged
files can be presented directly during data acquisition and
potential timing inaccuracies are avoided. Finally, the per-
ceptual detectability of the modulation should be evalu-
ated. Forinstance, Drijvers et al. (2021) showed in a pretest
that amplitude modulation at 61 Hz did not impair speech
intelligibility in clear speech conditions, indicating that
high-frequency tagging can be applied without compro-
mising stimulus clarity. We briefly note these caveats here
for completeness, but a detailed discussion of auditory
tagging lies outside the scope of this paper.

4 Analysis Considerations

41 Common Analysis Methods

This section outlines common techniques for quantify-
ing the RIFT response. First, we describe two ways of
computing the spectral content of the M/EEG signal on
each trial. These include power as measured by the tra-
ditional Fourier Transform, as well as the filter-Hilbert
Transform (filter-HT) approach. Then, we describe how
phase-consistency across trials is commonly leveraged
by computing (inter-trial) coherence. We subsequently
provide an overview of the RIFT response as measured
through each of these techniques (Figure 6).

All techniques listed here are used to measure the mag-
nitude of neural activity at specific frequencies induced
by RIFT and to assess the stability and intensity of these
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responses across trials, conditions, or participants. They
all operate on data that has been segmented into epochs
after or during preprocessing, often around the onset of
the tagging. Which technique to use for estimation of
spectral coefficients (FFT versus filter-HT), and for subse-
quently quantifying the RIFT response (power, amplitude,
or (inter-trial) coherence) depends on the exact nature of
the experimental design. In general, coherence-like mea-
sures provide higher signal-to-noise ratio, so are preferred
when aggregating across trials is not a problem. When
single-trial estimates are necessary, power or amplitude
can be used.

411 Fourier Transform

Power at the tagging frequencies can be computed by con-
verting the time-domain data into the frequency-domain
using a Fast Fourier Transform (FFT). The time-frequency
trade-off must be considered here: e.g, ifaiming to achieve
1Hz frequency resolution, a window length of 1000 ms is
required.

Conversion to the frequency domain for regular M/EEG
analysis is usually accompanied by tapering of the signal
to reduce spectral leakage, i.e, the spreading of energy
from one frequency to others. Hanning or Hamming win-
dows provide strong attenuation of frequencies far away
from the frequency-of-interest (i.e., low side lobes), which
is desirable in standard M/EEG analyses. However, based
on our findings, boxcar tapers (i.e., essentially not tapering
at all) are more effective for capturing tagging responses,
due to the narrow main lobe of the boxcar taper.

If multiple frequency tags are present in the signal, en-
sure that unique tagging frequencies are spaced at least
N Hz apart for a 1/N second analysis window (e.g, at least
5Hz apart for a 0.2 s analysis window, or at least 2Hz apart
for a 0.5 s analysis window) to avoid spectral overlap (or,
see alternative suggestion using phase randomization in
Section 3.2.1).

4.2 Filter-Hilbert Transform

An alternative spectral transformation to the FFT is the
filter-Hilbert Transform (filter-HT). The Hilbert Transform
is only practically interpretable when applied on mono-
component signals, i.e, those produced by a single peri-
odic source. Thus, when computing the HT, an M/EEG sig-
nal must first be bandpass filtered at the frequency of in-
terest. For example, filtering a 60Hz tagging response be-
tween 58Hz and 62Hz. This can then be referred to as the
filter-HT approach. Bandpass filtering requires the selec-
tion of a bandpass width parameter. Narrower filter widths
reduce the contribution of neighbouring frequencies and
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Figure 6: Overview of tagging response as measured by various techniques. A. Spectrograms, B. traces, and C.
topoplots providing an overview of the RIFT response as measured by (left to right:) trial-averaged FFT-derived
power, trial-averaged filter-HT amplitudes, and filter-HT derived coherence. Shaded regions in B represent 95%
bootstrapped confidence intervals across participants. Data averaged across 24 participants from Dataset 1. For
filter-HT based analysis (used here for filter-HT amplitudes and coherence) we used a bandpass width of 2Hz
centered at panels A and C, and 3.8Hz for panel B. For FFT-based analysis (used here for Power), we computed
FFTs at a resolution of 0.1Hz using sliding windows of 1 sec duration with 95% overlap.

noise but provide poorer temporal resolution. Ideally fi-
nite impulse response (FIR) filters are used (Widmann et
al., 2015). See Section 3.2.1 for an overview of how this pa-
rameter choice matters when multiple tags are used.

41.3 Coherence

Coherence measures the synchronization between M/EEG
signals at specific frequencies and a reference signal, typ-
ically a pure sine wave at the tagging frequency or a pho-
todiode recording. In addition to relying on oscillatory
amplitude, coherence also relies on how phase-locked
these oscillations are across a set of trials. To perform co-
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herence analysis, a reference signal, such as a sine wave
matching the tagging frequency, is generated to match the
duration and sampling rate of the epochs. If the exact
same reference signal (identical frequency and phase) is
utilized across trials the resulting coherence is equivalent
to intertrial coherence (ITC). Alternatively, some studies
use the photodiode measurements from the on-screen
tagging as a reference signal (Duecker et al, 2021; Pan et
al, 2021), as this measure provides the ground truth even
when encountering imprecisions in the tagging response
(e.g., due to missed frames), which would be missed by the
sine wave approach.



Equation 1 provides a measure of how consistently the
brain’s activity synchronizes with the tagged stimulus, re-
sulting in a coherence estimate at time ¢.

|Gy (1)
Gaa(t) Gyy (1)

In Equation 1, G, is the cross-spectral density of the
M/EEG signal and the reference signal, measuring how
much the signals oscillate together. G, and G, are their
auto-spectral densities, measuring the strength of oscilla-
tions in each signal individually. These spectral densities
can be computed in different ways, for example through
an FFT or through a filter-HT, as described above. High
coherence implies a consistent response to the tagging
frequency. Coherence is computed across time and/or tri-
als. Previous RIFT literature describes this computation in
more detail (Arora et al.,, 2025; Pan et al,, 2021; Spaak et al,,
2024).

coh(t) = (1)

Comparisons across experimental conditions can be made
by computing coherence separately on groups of trials
corresponding to specific conditions (rather than on in-
dividual trials), and contrasting the resulting coherence
traces. Condition-wise coherence can in this manner be
computed per channel, per tagging frequency, and per
participant.

Coherence is particularly advantageous compared to
power because it captures not only the amplitude of oscil-
latory activity but also the consistency of its phase align-
ment with the stimulus across trials (Figure 3 in Spaak et
al., 2024). Consequently, coherence provides greater sensi-
tivity for detecting reliable neural responses at the tagging
frequency, even in the presence of amplitude variability or
noise.

4.2 Baselines

For all experiments, we recommend a traditional base-
line where no stimuli are presented, tagged or otherwise.
This offers an additional SNR metric to demonstrate the
strength of the tagged response by comparison to a no-
tagging period. However, depending on the research ques-
tion and its potential confounds, different experiments
may require different additional baselines. In cases where
cognitive (e.g, attentional) modulations of the RIFT re-
sponse could be positive (e.g, enhancement) or negative
(e.g., suppression), a ‘tagging baseline’ may also be of use.
That is, a period of time where the tagged stimuli are pre-
sented but without the experimental manipulation of in-
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terest. This then provides a base amplitude of tagging
compared to which modulations can be then observed
as positive or negative. Without such a tagging baseline,
even if it is possible to compare different tagging condi-
tions to each other, it may not be possible to tell whether
a particular condition reflects a suppression or enhance-
ment of the RIFT response. Other experiments may war-
rant the use of a ‘cognitive baseline’, where experimental
stimuli are presented without tagging. This can help iden-
tify whether and at which frequencies oscillatory effects
arise independently of tagging. This baseline is especially
critical when analyzing IM frequencies that overlap with
lower-frequency bands.

4.3 Channel Selection

431 The RIFT topography differs based on tagging
location

All analysis techniques described above in Section 4.1 are
computed independently for all channels. As is the case
with any M/EEG analysis, channel selection is then an
important step when analyzing the RIFT response. This
is especially true here since the topography of the RIFT
response varies based on the tagging location, i.e., the
same tag may evoke different response patterns across
channels in trials with different tagging locations. This is
evident from the topographies in Figure 6C, where lateral-
ized peaks are seen depending on which hemisphere the
tagged stimulus is displayed in. Channels can either be
selected separately for each location at which tags were
displayed (but, importantly, still blind to the experimental
conditions of interest; (Wang et al., 2025)), or, first the tag-
ging amplitude across different location presentations can
be averaged to produce a general tagging response topog-
raphy from which channels can then be selected (Arora
et al, 2025: Bouwkamp et al,, 2025). The former would al-
low for a stronger response since channel selection can
then reflect the unique topographies across different loca-
tions of presentation, however, the latter does not require
splitting trials into various bins which can negatively affect
statistical power and SNR.

Here, we show using Dataset 1 that there is very little
difference between the two procedures, both in terms of
the resulting RIFT response obtained, and the modula-
tion (here by means of covert attentional shifts) to this
response (Figure 7 blue vs. pink). This conveys that it may
not be necessary to split trials into conditions based on
where the tagging was displayed, retaining higher SNR.
Dataset 1 included two different tagging locations each at
6 degrees of visual angle (dva) horizontal eccentricity.
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4.3.2 Number of channels selected does not affect the
top-down RIFT modulation

Since slight differences in the exact topographies can be
expected across participants (see Arora et al, 2025 for
an overview of topographies across 72 participants), most
studies conduct a participant-wise selection of channels.
This can be done either through a participant-wise se-
lection of ‘n’ channels that show the strongest tagging
response, or a selection of all channels that show a sig-
nificant difference in tagging response from baseline. In
case a channel-average referencing procedure is imple-
mented during preprocessing, the former option is pre-
ferred. Making a selection of top channels should ideally
be done using an independent dataset, for example, a
tagging baseline (see Section 4.2) where the tagging is pre-
sented without the experimental manipulation of interest.

Here, we show that attentional modulations to RIFT are in-
dependent of the exact number of channels selected. We
looked at the effect of how many channels are selected
on coherence and its attentional modulation as measured
from Dataset 1 (Figure 7). Although average coherence
decreases as more channels are selected, the relative
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top-down modulation of this coherence (% change with
attention in/out) is unaffected regardless of how many
channels are selected, meaning that the exact number of
channels selected is not as relevant. Alternatively, spatial
filters such as Rhythmic Entrainment Source Separation
(Cohen & Gulhinaite, 2017) may be used, circumventing
concerns with numbers of channels.

4.3.3 Additional considerations for MEG

With MEG there is an additional consideration, namely
that of whether to use magnetometers or gradiometers.
Previous work showed that the two measures are largely
comparable, however magnetometers compared to planar
gradiometers had stronger sensitivity to tagging (Minarik
et al, 2023). A majority of the current studies use axial
gradiometers, which some convert to planar gradiometers
(Bouwkamp et al,, 2025; Drijvers et al., 2021; Seijdel et al,,
2024; Zhigalov et al., 2019).

A further concern with MEG, compared to EEG, is that the
sensor topographies are likely more heterogeneous across
participants (i.e., EEGis strongly spatially low-pass filtered).
Therefore, more care is needed for channel selection in



MEG than in EEG. The case for (anatomical and/or signal-
driven) spatial filtering may thus be stronger in MEG than
in EEG.

4.4 Variation in the RIFT response across
participants is not driven by standard
collection noise.

With RIFT, we operate close to the threshold of stimula-
tion that does not produce a measurable tagging response
in the M/EEG signal (> 72Hz as discussed in Section 3.1).
Even when operating at a feasible tagging frequency, mak-
ing stimuli smaller, more peripheral, or using less of the
dynamic luminance range may eliminate a measurable
tagging response. Importantly, each participant's tagging
amplitude drop-off may scale differently with any of these
factors (Minarik et al., 2023). Itis worth highlighting this be-
cause in the authors’ experience a tagging response is not
visible in every participant with every tagged stimulus de-
sign. In some designs, only two-thirds of the participants
show viable peaks at the tagging frequencies compared to
non-tagged frequencies (Pan et al, 2021), even when using
more sensitive analysis methods such as coherence. Here,
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we visualize the spread of the tagging response across
participants in two experiments (Figure 8), one with a rel-
atively large tagged area showing a response in almost all
participants (Dataset 1) and one with a relatively smaller
tagged area showing a response in roughly three-quarters
of participants (Dataset 2).

Even without participants that can be qualitatively la-
belled as ‘unresponsive’ to the tagging, there is a lot of
variability in the strength of the response of Dataset 1.
We conducted further analyses in an attempt to identify
the source of this variability. One possibility is that this
variability only reflects standard collection noise, since
any measure of frequency amplitude or phase would be
negatively impacted in participants with noisier signals.
Such noise would also be visible as variability in the raw
voltage recordings. We correlated the participant-wise
variability in the raw voltage (trial-wise standard error in
event-locked ERPs) to coherence. Despite picking sev-
eral points of time along the trial to use for the voltage
variability measure, we observed no correlation between
signal noise (ERP variability) and coherence (Figure 9A-D).
That is, participant variability in the tagging response is
not driven by overall noise in the data.
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Figure 8: Spread of 60Hz and 64Hz coherence across participants in Datasets 1and 2. Coherence amplitudes
from two tagged frequencies compared to non-tagged frequency baseline for A. Dataset 1 B. Dataset 2. Insets
show tagged stimulus size and eccentricity. Dataset 2 shows a larger proportion of participants with a tagging
response minimally distinguishable from baseline, most likely due to smaller tagged area.

Next, we wanted to see whether this variability in the tag-
ging amplitude affects the attentional modulations that
can then be observed in the tag. With Dataset 1, for ex-
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ample, this effect of interest comes from increased covert
attention at the tagging location to encode an item pre-
sented there. We compared the participant-wise coher-
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Figure 9: Coherence amplitude is not correlated with trial-wise ERP variation across participants. A. ERP aver-
aged across participants and top channels similarly to coherence, shaded areas represent mean trial-wise SEM.
Pearson (R,.) and Spearman (Rs,) correlations between participant-wise coherence amplitude and trial-wise
SEM of B. baseline (-1.8 to -1.1s), C. cue ERP (-0.97s), and D. stimuli ERP (0.17s). Coherence amplitude is correlated
with absolute, but not relative, attention modulation. Pearson (R,.) and Spearman (R;,) correlations between
coherence amplitude and E. absolute attentional modulation of coherence F. relative attentional modulation
of coherence. Coherence and attentional modulation from Dataset 1 averaged in the interval with a significant
attentional modulation at the group level (0.28-114s after tag onset). Data from 24 participants of Dataset 1.

ence to the attentional modulation of this signal (i.e,, the
boost in the RIFT response from covertly attending the
tagged location) using Dataset 1. Naturally, having a higher
overall coherence was strongly linked to a higher abso-
lute attentional effect (Figure 9E). However, interestingly,
when looking at the relative attentional effect (i.e., the cog-
nitive effect as a fraction of the overall coherence), there
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was no benefit afforded by higher overall coherence am-
plitudes (Figure 9F). That is, the effect observed in Figure
9E is caused only by linear scaling of the amplitude mod-
ulation. Thus, variability in tagging strength across partici-
pants may not be of consequence to experimental manip-
ulations, provided that a viable tagging peak is observed.



4.5 Spontaneous eye movements around
fixation do not impact the RIFT response

Most studies on covert attention, or shifts of spatial atten-
tion, require participants to fixate the center of the screen
while some stimuli of interest are presented in the periph-
ery (Posner, 1980). Since in the visual domain RIFT acts as a
tracker of spatial attention, this is also the design of many
RIFT studies (Arora et al., 2025; Bouwkamp et al., 2025; Fer-
rante et al., 2023; Seijdel et al., 2024; Zhigalov et al., 2019).
The fixation requirement is frequently controlled with an
eye tracker, so that trials containing large saccades can
be identified and excluded. But measures like RIFT are
subject to an additional eye-movement related concern:
visual stimuli close to the fovea are processed much more
strongly than those in the periphery. The absence of large

saccades towards a tagged stimulus or location does not
eliminate the presence of small deviations in gaze posi-
tion (<1 dva) that might nonetheless bring the tag closer
or further away from the fovea. Does variability in gaze
position at these small scales consistently drive the RIFT
response?

This question has previously been addressed at the trial
level when linked to consistent attentional modulations
of gaze position through microsaccadic action (Arora et
al., 2025), and we recommend researchers to conduct sim-
ilar trial-level tests when using RIFT in designs where
eye movements can be a potential confound. Here, we
present a more sensitive analysis in which we conducted
a timepoint-by-timepoint comparison of gaze position and
the RIFT amplitude of two peripheral tags (one at 60Hz and

Does variable gaze position around fixation considerably affect the RIFT response?
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the other at 64Hz) on the screen from Dataset 1. The trials
from Dataset 1 consisted of two tagged stimuli slightly be-
low left and right of fixation.

First, we computed participant-wise gaze densities within a
square (side length 1.5 dva) centered at fixation per partic-
ipant (Figure 10B). Gaze was present within this square for
96.7% of the duration used. Then, we conducted the fol-
lowing analysis for each binned section of the gaze density
plot (bin width 0.05 dva). We isolated all the time points
during which gaze was within that particular bin. We then
averaged the RIFT amplitude over all these timepoints.
Thus, we obtained a measure of the mean RIFT amplitude
from when participants’ gaze position was localised within
each bin (Figure 10C). We next tested whether gaze devi-
ation away from fixation and towards the tagged stimuli
locations influenced the RIFT amplitude. The lateralization
plots testing this (left minus right; averaged across partici-
pants; Figure 10D) show no consistently positive difference
for 60Hz or negative difference for 64Hz. This was also sta-
tistically confirmed with a 2D cluster based permutation
test (Maris & Oostenveld, 2007).

Thus, small fixational eye movements (<0.75 dva) do not
meaningfully drive the RIFT response. This confirms that
an enhancement of the RIFT response measured in such
cognitive tasks can reflect a genuine top-down modula-
tion of the responsiveness to the tagged location or stim-
ulus, rather than simply being a correlate of changes in
foveation.

5 Interpreting the RIFT Response

RIFT utilizes a relatively well understood property of the vi-
sual system: its responsiveness to changes in luminance.
Unlike traditional SSVEP, it achieves this without being
consciously perceived. Since conscious perception is as-
sociated with more downstream areas of the visual hier-
archy, this implies that the response to RIFT stimulation
is limited to upstream visual areas; i.e., early visual cor-
tex. This selectivity is part of what makes RIFT attractive:
conventional stimuli unavoidably elicit responses from
the whole visual system, but this technique allows re-
searchers to non-invasively measure a response that is
selectively obtained from an early subset of this system
and thus not a direct readout of high-level processing. The
well-established attentional modulation of RIFT responses
therefore likely reflects the influence of attentional pro-
cessing in higher-order regions on the early visual cortex
activity.

Where does the boundary lie between the neural activity
captured by RIFT and the subsequent downstream pro-
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cessing? The few existing studies that have utilized RIFT
do not convey a unanimous answer to this question. Terms
such as “cortical excitability” (Zhigalov et al., 2019), or [re-
sponses from] the “early visual cortex” (Arora et al.,, 2025;
Drijvers et al, 2021: Pan et al, 2021), “predominantly pri-
mary visual cortex” (Duecker et al., 2025), “occipital cortex”
(Minarik et al., 2023), have been used to describe the RIFT
response, both with and without the explicit mention of re-
gionssuchasV1orV2. There is no doubt that the peak RIFT
response is in fact localized to relatively early processing
areas; its retinotopy and existing MEG source localization
work (Drijvers et al, 2021; Duecker et al,, 2025; Ferrante
et al, 2023: Minarik et al., 2023) is clear evidence of this.
However, even within these studies, there are slight vari-
ations in regions to which the RIFT response is attributed
(for e.g, “V1": Duecker et al., 2025 “V1/V2": Ferrante et al,
2023).

Applying a combination of visual and auditory tagging
has given rise to IM frequencies that have been localized
beyond regions typically responsive to sensory processing,
such as (left) frontotemporal cortex (Drijvers et al., 20271;
Husta et al, 2025; Seijdel et al,, 2024). This suggests that,
intriguingly, RIFT signals may progress to downstream ar-
eas of the visual hierarchy, where consequences of their
(nonlinear) processing, i.e., the IM peaks, are detectable.

6 Closing

RIFT provides a powerful new way to study rhythmic cog-
nition. By embedding invisible, high-frequency tagging
into stimuli, it offers a clean, and continuous marker of
neural processing that avoids the perceptual confounds of
traditional frequency tagging. As this manual outlines,
careful attention to hardware, tagging parameters and
analysis methods are imperative for the success of RIFT
experiments. This manual therefore serves as a guide for
implementing Rapid Invisible Frequency Tagging (RIFT) in
cognitive neuroscience research. By outlining detailed
protocols and recommendations for setup, experimen-
tal design, and analysis (based on both prior experience
and data-derived evidence from multiple labs) it provides
researchers with the necessary tools to leverage RIFT's ca-
pabilities effectively. With these best practices in place,
RIFT opens opportunities to probe attention, perception,
memory and multimodal integration, under naturalistic
settings, thus bridging the gap between experimental re-
search and everyday cognitive functions. In sum, we hope
that this guide will help establish RIFT as a standard ap-
proach for studying the oscillatory dynamics that shape
human cognition.

Looking ahead, there is a compelling need for ongoing re-



search aimed at enhancing the accessibility of the required
technology, refining the procedures to minimize variability,
developing more robust methods for data analysis, and
expanding the growing list of theoretical questions that
RIFT is used to study. By continuing to develop and apply
the RIFT technique in cognitive research, the neuroscience
community can push the boundaries of our understanding
of brain function and cognition.

Supplementary Material and Code

We make use of two previously collected datasets to
demonstrate common RIFT design and analysis tech-
niques.

In Dataset 1 (Arora et al., 2025), 24 participants performed
480 trials each of a working memory task (the 'pre-cue’ ex-
periment in Arora et al, 2025). Here, we only make use of
the 1s period of this task when two gratings, tagged at 60Hz
and 64Hz, were displayed in the lower visual field. Further
details on the task, data preprocessing, and analysis can
be found in Arora et al, 2025). In Dataset 2 (unpublished
data), 23 participants viewed a grid display with three grid
locations, tagged at 60Hz, 64Hz, and 68.5Hz respectively.
Figure S1 provides an overview of the stimulus and tagging
parameters for both datasets.

Example experimental files and useful functions for
designing RIFT experiments in combination with the
PROPixx projector can be found in the following reposi-
tory: https://osf.io/9mv3e/
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Figure S1: Screen display and tagging parameters for Datasets 1 and 2.
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