
Dynamic competition between bottom-up saliency and top-down 

goals in early visual cortex 

 

 

Dan Wang1, Kabir Arora1, Jan Theeuwes2,3,4, Stefan Van der Stigchel1, Surya Gayet*1, Samson Chota*1 

1. Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands 

2. Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Netherlands 

3. Institute Brain and Behavior Amsterdam (iBBA), Netherlands 

4. William James Center for Research, ISPA-Instituto Universitario, 1149-041, Lisbon, Portugal 

 

Author notes: 

1. Surya Gayet* and Samson Chota* contributed equally to this work. 

2. Jan Theeuwes was supported by a European Research Council (ERC) advanced grant 833029 – 

[LEARNATTEND] and by a NWO Open competition grant 25 406.21.GO.034  

 

 

Corresponding author: Dan Wang 

Present address: Heidelberglaan 1, 3584 CS, Utrecht, Netherlands 

Email: wangdanmails@gmail.com 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 27, 2025. ; https://doi.org/10.1101/2025.08.22.671530doi: bioRxiv preprint 

mailto:wangdanmails@gmail.com
https://doi.org/10.1101/2025.08.22.671530
http://creativecommons.org/licenses/by/4.0/


Abstract 

Task-irrelevant yet salient stimuli can elicit automatic, bottom-up attentional capture 

and compete with top-down, goal-directed processes for neural representation. However, the 

temporal dynamics underlying this competition, and how they influence early visual processing, 

remain poorly understood. Here, we combined electroencephalography (EEG) with Rapid 

Invisible Frequency Tagging (RIFT) to non-invasively and simultaneously track early visual 

cortex responses to target and distractor. Both target and distractor evoked stronger initial RIFT 

responses than nontargets, reflecting top-down and bottom-up attentional effects on early visual 

processing. Importantly, the presence of a distractor attenuated the initial RIFT response to the 

target, reflecting competition during the initial stages of visual processing and predicting 

subsequent behavioral performance. RIFT responses to the distractor eventually even 

decreased below responses to the target and nontarget, representing active suppression of task-

irrelevant but salient stimuli. We show that the dynamic interplay between top-down control 

and bottom-up saliency directly impacts early visual responses, thereby illuminating a 

complete timeline of attentional competition in visual cortex.  
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Introduction 

Imagine driving down a busy road, focusing on the surrounding traffic, when a flashing 

billboard suddenly catches your eye and briefly distracts you from the roadway ahead. This 

illustrates how attentional control arises from the interaction between two competing processes: 

bottom-up control driven by saliency (e.g., the flashing billboard) whereby attention is 

automatically captured by elements that stand out from the environment (Theeuwes, 1991; 

1992; 2021), and top-down control (e.g., maintaining focus on the roadway) which directs 

attention based on goals and intentions (Folk and Remington, 1998). It is widely accepted that 

both processes contribute to attentional selection (Luck et al., 2021). According to the biased 

competition framework (Desimone & Duncan, 1995; Luck et al., 1997; Tsotsos et al., 1995) 

objects in the visual field compete for neural representation in visual cortex. This competition 

is initially driven by bottom-up salience during the early feedforward sweep of sensory 

processing and is subsequently shaped by top-down signals, likely conveyed via feedback 

connections from higher-level cortical areas (Beck & Kastner, 2009; Theeuwes, 2010). It 

remains unclear, however, how these processes unfold over time within early visual cortex. 

Here, we test whether initial bottom-up salience signals and subsequent top-down control 

mechanisms are both reflected in early visual cortex responses to competing stimuli. 

To determine how top-down and bottom-up processes unfold over time in early visual 

cortex, we employed Rapid Invisible Frequency Tagging (RIFT) while participants performed 

the additional singleton task (Theeuwes, 1991; 1992; 2010). In this task, participants search for 

a shape singleton target among nontarget items (e.g., a green diamond among green circles). 

On some trials, one of the nontarget items is a salient but irrelevant color singleton distractor 

(e.g., a red circle). Typically, response times increase on “distractor present” trials compared to 

“distractor absent” trials, indicating that the distractor captured attention in a bottom-up way. 

By utilizing RIFT, we are able to track, in time, how biased competition unfolds between the 
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bottom-up salience of the distractor and the top-down relevance of the target in early visual 

cortex. Specifically, we can test (1) whether the presence of a salient task-irrelevant distractor 

reduces early visual cortex responses to a concurrent task-relevant target, and (2) whether 

subsequent top-down control mechanisms further reduce responses to a salient but task-

irrelevant distractor. 

RIFT works by modulating the luminance of one or more visual stimuli at distinct high 

frequencies (e.g., 60 Hz and 64 Hz), which elicits frequency-matching periodic activity in the 

EEG signal originating from early sensory areas (V1/V2; Arora et al., 2025; Dietz et al., 2025 

(preprint); Duecker et al., 2021; 2025; Ferrante et al., 2023; Minarik et al., 2023; Seijdel et al., 

2023; Zhigalov et al., 2019). These periodic responses enable highly time-resolved and 

spatially specific tracking of attention in the early visual cortex (Arora et al., 2025; Duecker et 

al., 2025; Ferrante et al., 2023; Zhigalov et al., 2019). Importantly, because stimulus luminance 

is modulated at frequencies far above the critical flicker fusion threshold (Landis, 1954; e.g., 

~40 Hz), the flicker is imperceptible to observers and does not perceptually interfere with the 

ongoing task (Spaak et al., 2024). Together, these properties make RIFT a powerful tool for 

disentangling visually evoked responses to concurrently presented visual events. Here, this 

technique allows us to test whether—and how—the competition between target and distractor 

stimuli unfolds in early visual cortex. 
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Results 

Behavioral results 

To evaluate whether the presence of distractor affected behavioral performance, we 

conducted a paired-sample t-test comparing mean response times (RTs) for correct trials 

between the distractor present and absent conditions. This revealed that RTs were significantly 

slower when the distractor was present (Mean = 924 ms) compared to when it was absent 

(Mean = 873 ms, t(23) = 8.582, p < 0.001, Cohens’ d = 1.752; Figure 1B), a finding typically 

interpreted as evidence that the salient distractor captured attention. A similar effect was 

observed for accuracy (see supplementary materials, Figure S1). 

Validation of frequency-specific neural responses  

We verified whether our frequency-tagging manipulation successfully elicited 

corresponding frequency-specific neural responses by calculating the coherence between the 

EEG signal and the corresponding tagging frequencies. Because we randomly shifted the phase 

of the 60 Hz tag relative to the 64 Hz tag, we computed coherence spectrograms separately for 

each frequency (see Methods section). The resulting spectrograms showed clear peaks at 60 

Hz (Figure 1C) and 64 Hz (Figure 1D) following flicker onset, with strongest responses over 

parietal and occipital electrodes (see topography insets, individual traces in supplementary, 

Figure S2; S3), confirming successful retrieval of the tagging signals from the EEG. 

RIFT responses to the distractor and nontarget 

We tested whether attentional capture by the distractor was reflected in the RIFT 

responses. Compared to the nontarget, the distractor evoked significantly stronger coherence 

in an initial time window (p = 0.036; [cluster extent: ~150 to ~350 ms]; cluster-based 

permutation test) and significantly weaker coherence in a later time window (p = 0.019; [cluster 

extent: ~640 to ~900 ms]; cluster-based permutation test; Figure 2A, left). To further 
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characterize the temporal dynamics of the visual processing at the early time window (0-600 

ms), we conducted a one-sided t-test to examine whether the time-to-peak of the coherence 

traces differed between distractor and nontarget. However, the time-to-peak of the coherence 

trace for the distractor was not significantly different from that for the nontarget (p = 0.103, 

t(23) = 1.302, Cohen's d = 0.266; Figure 2A, right).  

Coherence measures thus indicated that more attention was allocated to the salient 

distractor than to the nontarget items initially, as indexed by a stronger stimulus-specific RIFT 

responses, signifying early attentional capture. Critically, attention to the salient distractor later 

fell below that directed to the nontarget items, reflecting attentional disengagement and 

suppression. This pattern compellingly illustrates the temporal unfolding of attentional 

allocation in early visual cortex, revealing how attention is first captured by the salient 

distractor and subsequently withdrawn and even suppressed over time.  

RIFT responses to target and nontarget 

To examine whether attentional selection of the target was reflected in the RIFT 

responses when no distractor was present, we compared target-evoked coherence with the 

coherence evoked by the nontarget within the same trial. Target-related coherence was 

significantly stronger than coherence for nontarget in an initial time window (p = 0.0001; 

[cluster extent: ~75 to ~540 ms]; cluster-based permutation test; Figure 2B, left). The time-to-

peak of the coherence trace did not differ significantly between the two during the early time 

period (0-600 ms; p = 0.132, t(23) = 1.145, Cohen's d = 0.234; Figure 2B, right). These results 

suggest that when no salient competitor is present, attention is initially allocated to the only 

salient item in the display, allowing for fast and accurate selection of the salient target.  
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RIFT responses to target with and without distractor 

We tested whether the presence of a distractor affected early visual processing of the 

target. To this end, we compared coherence evoked by the target in the presence versus absence 

of a distractor. Coherence was significantly higher when the distractor was absent in an initial 

time window (p = 0.015; [cluster extent: ~50 to ~300 ms]; cluster-based permutation test; 

Figure 2C, left). Furthermore, the coherence for the target reached its peak earlier in the early 

time window (0-600 ms) when the distractor was absent compared to when it was present (p = 

0.021, t(23) = 2.149, Cohen’s d = 0.439; Figure 2C, right). These results demonstrate that the 

presence of a distractor results in less attention being allocated to the target, consistent with the 

notion of biased competition (Desimone & Duncan, 1995). 
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Figure 1. (A) Experimental paradigm. After an initial display consisting of placeholders, the search display 

was presented. Participants were instructed to search for a unique shape singleton target (here a diamond among 

circles) and respond as quickly and accurately as possible to orientation of the line segment inside it. On half 

of the trials, a color distractor was present (here: red among green). Target and distractor (or one of the 

nontargets) were frequency tagged (luminance-modulated) at 60 Hz and 64 Hz throughout the search display 

(see Tagging manipulation for details). Note: the figure is not to scale; no outlines were visible around the 

flickering regions in the actual experiment. (B) Behavioral results. Participants were slower to find the target 

when a distractor was present. The blue bar represents reaction times in the distractor present condition, while 

the orange bar represents the distractor absent condition. Each dot indicates the mean response time of an 

individual participant. ***p < 0.001. (C) Time-frequency plot of coherence (phase realigned 60 Hz), averaged 

across participants and individuals top 6 channels. Top right inset: Scalp topography of average 60 Hz 

coherence across the 1.2-second after search display onset. (D) Time-frequency plot of coherence (64 Hz), 

averaged across participants and individuals top 6 channels. Top right inset: Scalp topography of average 64 Hz 

coherence across the 1.2-second after search display onset. 

RIFT responses to targets and distractor 

To investigate the dynamics of attentional competition between the target and the 

distractor, we statistically compared their coherence traces in the distractor present condition. 

No significant differences in coherence were observed between the target and the distractor at 

the beginning of the trial (Figure 2D, left). However, within the early time window (0–600 ms), 

the peak coherence occurred significantly later for the target than for the distractor (p = 0.013, 

t(23) = 2.395, Cohen's d = 0.489; Figure 2D, right). Critically, target-evoked coherence 

significantly exceeded distractor-evoked coherence in a later time window (p = 0.002; [cluster 

extent: ~390 to ~840 ms]; cluster-based permutation; Figure 2D, left). 

Taken together, these findings suggest that the target and distractor are in direct 

competition for attentional resources during the early stage of processing, with the distractor 

initially capturing attention and thereby delaying visual processing of the target. Over time, the 

RIFT responses to the distractor were attenuated and even suppressed relative to nontarget 
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items, thereby resolving the competition between the distractor and target, enabling the 

selection of the target. These results highlight that RIFT is well-suited to measure changes in 

neuronal excitability in early visual cortex associated with attentional competition during visual 

search. 

 

Figure 2. RIFT responses across experimental conditions. (A). Coherence time-series of distractor (blue 

dashed), nontarget (orange dashed) and the difference (purple solid). Shaded areas represent 95% confidence 

intervals of the mean. Significant clusters (from cluster based-permutation tests) are indicated by horizontal 

solid black lines. Right bar graphs show the time-to-peak analysis of the coherence trace (0-600 ms) for each 

condition. (B). Coherence time-series of target without distractor (orange solid), nontarget (orange dashed) and 

the difference (purple solid). (C). Coherence time-series of target with distractor (blue solid), target without 

distractor (orange solid) and the difference (purple solid). (D). Coherence time-series of target with distractor 

(blue solid), distractor (blue dashed) and the difference (purple solid). 

 

Correlation between RIFT responses and behavioral RTs 

To investigate whether the measured RIFT responses to target and distractor were 

related to participants’ behavior, we computed trial-wise correlations between Trial-Ensemble 

Phase Similarity (TEPS, a phase-based, single-trial measure of the tagging signal; see Methods 
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section) and RTs. Because we were specifically interested in how the competition between the 

target and the distractor was resolved over time, we calculated the difference in RIFT responses 

between the target and distractor within the same trial and correlated this differential RIFT 

response with the RTs to the target across trials (Figure 3). We observed a significant negative 

correlation between TEPS and RTs in an initial time window (p = 0.003; [cluster extent: ~290 

to ~520 ms]; cluster-based permutation; Figure 3), indicating that the greater the RIFT 

responses to the target compared to the distractor, the faster the participant responded to the 

target. This finding demonstrates that the RIFT responses capture behaviorally relevant 

processes. 

 

Figure 3. Time-resolved, trial-wise correlation between RTs and the TEPS difference between target and 

distractor within the same trial. Only correct trials in the distractor present condition used. Shaded areas 

represent 95% confidence intervals of the mean. Significant clusters (from cluster based-permutation tests) are 

indicated by horizontal solid black lines. 
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Discussion 

The present study employed Rapid Invisible Frequency Tagging (RIFT) with EEG to 

examine how competition between top-down attention (to the target) and bottom-up attention 

(to the distractor) unfolds over time in visual cortex. In line with the biased competition 

framework (Desimone & Duncan, 1995; Reynolds & Desimone, 2003), the results indicate that 

early in processing the distractor briefly dominates the competition, whereas at later stages the 

target prevails. Crucially, the outcome of this competition is a clear neural representation in 

visual cortex of the selected (winning) object, accompanied by a diminished representation of 

the non-selected (losing) objects. 

In the current task, participants correctly responded to the target well above chance 

level, indicating that ultimately the target is selected and wins the competition. However, the 

strength of this study lies in how the RIFT responses to both the target and distractor jointly 

provide insight into how this competition is resolved, up to the point of the eventual selection 

of the target. It is evident that in distractor-absent trials, there is basically no competition (the 

target is the only salient element in the display) and the RIFT responses show that in this 

condition target processing dominates from the earliest moment onwards, giving rise to fast 

and accurate responses.  

However, due to the limited processing capacity of the visual system, competition arises 

when both the target and distractor are simultaneously present, both competing for neural 

representation. The results show that, early on—during the initial feedforward sweep of 

sensory processing—the competition is won by the salient distractor: RIFT responses to the 

target were delayed, while responses to the distractor exceeded those elicited by nontarget items. 

Later in time, RIFT responses to the salient distractor dropped not only below responses to the 

target, but also below responses to nontarget items. This suggests that salient but task-irrelevant 

objects in the environment not only cease to attract attention over time but may also become 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 27, 2025. ; https://doi.org/10.1101/2025.08.22.671530doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.22.671530
http://creativecommons.org/licenses/by/4.0/


suppressed to facilitate the neural representation of the task-relevant objects. Critically, within-

subject, trial-wise correlations reveal that larger RIFT responses to target compared with 

distractor (a direct measure of competition in the early visual cortex) are associated with faster 

reaction times to find the target, highlighting the functional role of these early sensory 

modulations for the successful completion of goal-directed behavior. 

Overall, the pattern of RIFT responses is consistent with stimulus-driven accounts of 

perceptual competition, which propose that during the initial feedforward sweep of visual 

processing attention is automatically captured by the most salient element in the display 

(Theeuwes, 1992; 2010; 2025). Only later, through feedback signals, top-down processing 

allows attention to be disengaged from the distractor (Theeuwes et al., 2000). The below-

baseline RIFT response of the distractor indicates that disengagement even involves 

suppression, in line with the notion of reactive suppression (Geng, 2014). 

A recent study by Klink et al (2023) provides similar evidence supporting initial capture 

followed by rapid disengagement. In their research, Klink and colleagues examined neural 

responses in area V4 of macaque monkeys performing an eye movement-based version of the 

same paradigm that was used here (i.e., the additional singleton paradigm). Eye-tracking data 

suggested that the salient distractor was effectively ignored, as the monkeys' eyes moved 

directly to the target. Yet, the neuronal activity of V4 neurons showed a different picture: Early 

on, during the initial stage, there was attentional enhancement at the location occupied by the 

salient distractor. This initial enhancement was followed by suppression, occurring about 150 

ms later. These data show that even though behaviorally there appears to be successful 

inhibition of the salient distractor, this inhibition was preceded by attentional capture, providing 

evidence for the fast disengagement hypothesis (Theeuwes et al., 2000). Thus, the pattern of 

neuronal activity in V4 neurons reported by Klink et al. (2023) is consistent with the current 

pattern of findings in early visual cortex, obtained non-invasively in human subjects. 
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Also using the additional singleton paradigm, Lin et al (2024) recently recorded human 

intracranial signals covering multiple brain regions (but with very limited coverage in early 

visual cortex). They were able to dissociate distractor-specific representations from target 

signals in the high-frequency range (60–100 Hz). Consistent with the current findings, Lin et 

al. found that initially salient distractors were processed around 220 ms after stimulus onset, 

while at the same time, target-related processing was attenuated. Their findings highlight the 

competition for neural representation between target and distractor, consistent with the biased 

competition framework (Desimone & Duncan, 1995; Reynolds & Desimone, 2003). The 

present work extends the findings of Lin and colleagues (non-invasively), by specifically 

revealing that biased competition between target and distractor stimuli even influences early 

visual cortex responses.   

Using the same paradigm, previous studies have recorded scalp EEG to examine shifts 

of attention toward targets and distractors (e.g., Hickey et al., 2006; 2010; Schubö, 2009; Wang 

et al., 2019). Specifically, the N2pc component of the event-related potential was used to track 

the allocation of attention to lateralized positions in the search array. For example, in 

Experiment 2 of Hickey et al. (2006), both the distractor and the target (on different trials) 

elicited an N2pc when they appeared on opposite sides of the array. Critically, however, the 

pattern of N2pc responses indicated that attention was initially captured by the salient distractor 

before shifting to the target. This is consistent with a stimulus-driven account of attentional 

capture (Theeuwes, 1992; 2010) and with our current results. Importantly, however, our 

approach extends prior work by simultaneously measuring neural responses to both the target 

and the salient distractor within the same trial. This allowed us to directly assess their 

competitive interaction in visual cortex and link these neural dynamics to behavioral 

performance. 
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The temporal profile of RIFT responses suggests that suppression of the distractor 

relative to the nontarget items might be necessary for successful processing of the target. In 

other words, consistent with the biased competition framework, the competition between the 

distractor and the target must be resolved in favor of the target to enable its processing. Similar 

findings have been reported previously (Lin et al., 2024; Klink et al., 2023; Duecker et al., 

2025; Cosman et al., 2018; Forschack et al., 2022). As previously argued (Theeuwes, 2010; 

Born et al., 2011) distractor suppression may be necessary for attentional disengagement and 

is likely driven by top-down control signals originating from higher-order cortical regions such 

as the inferior frontal gyrus, prefrontal cortex, and area V4. These regions have been implicated 

in facilitating attentional shifts away from distractors and toward goal-relevant stimuli 

(Cosman et al., 2018; Klink et al., 2023; de Fockert & Theeuwes, 2012). 

One potential concern is that differences in eye movements toward the tagged stimuli 

might influence RIFT responses, since neural responses tend to be stronger for stimuli 

presented near the fovea (Wandell et al., 2007). To address this concern, we removed trials in 

which fixation was not adequately maintained. In addition, trial-wise correlation analyses 

between gaze bias and RIFT responses for both targets and salient distractors revealed no 

significant correlations (see Supplementary, Figure S5), suggesting that gaze position did not 

predict RIFT responses. Moreover, previous studies have shown that RIFT responses are not 

affected by small eye movements around fixation (Arora et al., 2025; Duecker et al., 2025), 

which further supports the conclusion that our findings reflect attentional process rather than 

fixation instability or gaze shifts. 

We interpret the changes in RIFT-evoked neuronal excitability as reflecting changes in 

the responsiveness of early visual cortex. Consistent with this view, previous studies have taken 

RIFT response modulations to indicate changes in neural excitability within early visual areas, 

including both primary and secondary regions (Duecker et al., 2021; 2025). Supporting this 
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interpretation, studies combining RIFT with magnetoencephalography (MEG) have 

consistently localized RIFT responses to early visual areas V1 and V2 (Duecker et al., 2021; 

2025; Minarik et al., 2023; Schneider et al., 2023; Zhigalov & Jensen, 2020). Taken together, 

this body of evidence provides a strong basis for linking our observed RIFT responses to early 

visual cortex activity. The present findings demonstrate that both top-down and bottom-up 

factors shape even the earliest stages of visual processing when stimuli compete for 

representation. 

In summary, the present study demonstrates that, during visual search, a salient 

distractor initially dominates processing in early visual cortex, reflecting a strong bottom-up 

drive. Subsequently, reactive suppression of the distractor is accompanied by a relative 

enhancement of the neural response to the target, which may jointly underlie successful target 

selection. Using RIFT with EEG, the current study reveals the dynamic interplay between 

bottom-up salience and top-down control in resolving attentional competition within early 

visual cortex. 
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Methods 

Participants 

To determine the appropriate sample size, we conducted a priori power analysis using 

G*Power 3.1 (Faul et al., 2007). Assuming a paired-samples t-test, an alpha level of 0.05, an 

effect size (dz) of 0.6, and a desired power of 0.8, the analysis indicated that 24 participants 

would be required. This sample size is comparable to those used in prior studies on attentional 

capture with EEG (e.g., Hickey et al., 2006; 2010; with 18 participants) and rhythmic sensory 

stimulation (e.g., Arora et al., 2025; Duncan et al., 2025; both with 24 participants). Four 

participants were replaced: three due to an excessive proportion of saccades (93.4%, 63.9%, 

and 52.8%, respectively), one due to below-chance search task performance (48% accuracy). 

The final sample thus consisted of 24 participants (mean age = 22.83 years, SD = 2.87; 22 

females). All participants had normal or corrected-to-normal vision and reported no history of 

epilepsy or cognitive impairments. Written informed consent was obtained prior to 

participation, and participants received either monetary compensation or course credit. The 

study was approved by the Ethics Committee of Utrecht University. 

Apparatus 

Stimuli were presented using a ProPixx projector (VPixx Technologies Inc., QC, 

Canada; 960 × 540 pixels, 480 Hz refresh rate) in a rear-projection format (screen size: 48 × 

27.2 cm). All stimuli were created using MATLAB 2021 (The MathWorks, Inc.) with the 

PsychToolbox extension (Kleiner et al., 2007). The viewing distance was maintained at 72 cm 

using a chin and forehead rest. Gaze was tracked using an EyeLink SR (SR Research, Ontario, 

Canada) eye tracker, which recorded data from both eyes at a sampling rate of 500 Hz.  

EEG data were recorded using a 64-channel ActiveTwo BioSemi system (BioSemi B.V., 

Amsterdam, The Netherlands) at a sampling rate of 2048 Hz. To monitor eye movements and 
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detect ocular artifacts, two additional electrodes were placed: one above the left eye to record 

vertical eye movements and one on the outer canthus of the left eye to capture horizontal eye 

movements. Before the experiment, signal quality across all channels was assessed and 

optimized using BioSemi ActiView software, ensuring stable and high-quality recordings. 

Procedure  

In the main experiment (depicted in Figure 1A), participants were instructed to maintain 

their gaze fixation on the central cross throughout the entire experiment. Each trial began with 

the presentation of a placeholder display for a randomly varying duration between 1200 and 

1450 ms. Following the placeholder display, a search display appeared for a fixed duration of 

1300 ms. Participants were instructed to identify whether the line segment inside the unique 

(target) shape (circle or diamond) was vertical (press "P") or horizontal (press "Q") as quickly 

and accurately as possible with left and right index finger respectively. Upon participant 

response, the color of the central cross changed from white to black. Participants completed 40 

practice trials to familiarize the experimental procedure. The main experiment consisted of 

1152 trials, divided into 8 blocks, and lasted approximately one hour. Prior to the experiment, 

a 9-point calibration was conducted to ensure accurate gaze measurements. This calibration 

was repeated after every two experimental blocks to maintain gaze tracking precision 

throughout the session. 

Stimuli  

All stimuli were displayed on a uniform dark background with an RGB value of (20, 

20, 20). The placeholder display comprised six shapes, each formed by superimposing a 

diamond (4.3° × 4.3° square rotated 45°) onto a circle (radius = 2.1°). The sizes of the circle 

and diamond matched those of the stimuli used in the subsequent search task. The outline of 

each shape was white (RGB: 255, 255, 255), while the inner area was filled with a mid-gray 
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color (RGB: 127.5, 127.5, 127.5). These six shapes were evenly spaced along an imaginary 

circle (radius = 6°) centered around the fixation cross (1.2° in length; RGB: 255, 255, 255). 

In the search task, six items were displayed in the same spatial arrangement as in the 

placeholder display, ensuring spatial consistency throughout the experiment. In the distractor 

present condition, the array consisted of one shape singleton target, one color singleton (salient) 

distractor, and four nontargets. In the distractor absent condition, the array contained one shape 

singleton target and five nontargets. The nontargets always shared the same color as the target 

and the same shape as the distractor. The target was either a circle or a diamond. When the 

target was a circle, all distractors were diamonds and vice versa. The outline color of the target 

was either green (RGB: 0, 131, 0) and that of the color-salient distractor was red (RGB: 255, 

0, 0), or vice versa. By varying both the shape and the color assignment across trials, 

participants could not proactively prepare for target or distractor features before the onset of 

the search array. Each item in the search array contained a central white line segment (3.1° in 

length), oriented either horizontally or vertically. The inner area of the target and one distractor 

(salient or nontarget, depending on condition) was luminance-modulated (excluding the white 

line segment) at either 64 Hz or 60 Hz, making them perceptually indistinguishable from mid-

gray (Arora et al., 2025). The inner areas of the remaining nontargets were filled with mid-gray. 

The target appeared randomly at one of the six positions with equal probability, with the 

constraint that the distractor was never placed directly adjacent to the target. 

Tagging manipulation 

We implemented RIFT stimulation from specific spatial locations in the visual field 

(corresponding to the target and distractor stimuli) by sinusoidally modulating the luminance 

of the inner area of stimuli at high temporal frequency (Arora et al., 2025; Drijvers et al., 2021). 

Tagging was applied throughout the entire duration of the search display. The two tagging 

frequencies (60Hz and 64Hz) were counterbalanced across target and distractor stimuli to 
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ensure that any difference in RIFT responses between stimuli could not be attributed to 

differences between tagging frequencies. In the distractor present condition, the target was 

tagged with one frequency (either 60 Hz or 64 Hz) and the distractor with the other. In the 

distractor absent condition, the target was tagged with one frequency and one of the nontargets 

with the other. 

To improve the temporal resolution of the RIFT responses given the inherent trade-off 

between time and frequency resolution (i.e., the Heisenberg uncertainty principle for signals), 

we implemented a phase randomization procedure as described below. The 64 Hz tagging 

signal was phase-locked to the onset of the search display in all trials. In contrast, the phase of 

the 60 Hz tagging signal was randomized at one of eight equally spaced phase offsets within a 

cycle (excluding 0° to avoid overlap with the 64 Hz component), randomly assigned on each 

trial. These phase offsets were recorded and later used to reconstruct a phase-aligned EEG 

signal for subsequent analysis (see RIFT responses section). Decoupling the 60 Hz and 64 Hz 

signals based on phase facilitates the separation of tags during EEG analysis, specifically when 

using methods that quantify the degree of phase alignment across trials (i.e. coherence, see 

RIFT responses section). Practically, it enables the use of broader bandpass filters when 

isolating the tagged responses, thereby enhancing temporal resolution without compromising 

frequency specificity. 

EEG pre-processing 

All data analysis was conducted in MATLAB using the Fieldtrip toolbox (Oostenveld 

et al., 2011). The EEG data was first re-referenced to the average of all channels (excluding 

poor channels determined by five default bad channels [T7, T8, Fp1, Fp2, Tp7] and additional 

visual inspection: median = 1.5 channels). Data was high-pass filtered (0.01Hz), then line noise 

and its harmonics were removed using a DFT filter (50, 100, 150Hz). Data was segmented into 

trials ranging from 0.8 s before to 1.2 s after search display onset. An ICA was performed to 
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remove oculomotor artifacts, and trials with other motor artifacts were removed from further 

EEG analysis as per visual inspection (mean = 6.49 %). Baseline correction was performed by 

averaging (and then subtracting from the signal) a window ranging from 0.8 s to 0.2 s before 

the onset of the search display. 

Eye-tracking analysis 

The time window of interest spanned 1.2 seconds following the onset of the search 

display. Due to head movements after eye calibration, one participant had one block excluded, 

and another participant had two blocks excluded before eye tracking data analysis. Blink 

correction was performed using custom code adapted from Hershman et al. (2018). To ensure 

that EEG responses to the frequency-tagged stimuli (target and distractor) were not confounded 

by large eye movements, we implemented eye movement exclusion criteria. A circular region 

of interest (ROI) with a radius of 3.5 dva (no stimuli was presented at this area) was defined 

around the central fixation point. Trials in which participants’ gaze deviated outside this ROI 

for more than 50 ms were classified as saccade trials and excluded from further EEG analysis. 

Participants with more than 50% of their trials marked as saccade trials were excluded from 

group-level analyses. As a result, three participants were replaced. On average, 13.65% of trials 

per participant were removed based on the saccade criterion.  

RIFT responses 

To quantify the degree to which the EEG signal reflects the tagging signals, we 

computed magnitude-squared coherence (Arora et al., 2025; Pan et al., 2021), a dimensionless 

measure ranging from 0 to 1 that reflects the consistency of two signals in both magnitude and 

phase. Coherence was computed between a reference sinusoid (sampled at 2048 Hz) and the 

neural responses to the tagged stimuli, separately for each frequency, EEG channel and 

participant. To calculate coherence for a specific frequency of interest, segmented trials (N) 
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were bandpass filtered (±1.9 Hz) around the respective tagging frequency using a two-pass, 

fourth-order Butterworth filter with a Hamming taper. The filtered time-series data were then 

subjected to a Hilbert transform to extract the instantaneous magnitude (M(t)) and phase (ϕ(t)) 

of the signal. The set of all instantaneous magnitudes of the filtered responses (𝑀𝑥⃗⃗⃗⃗⃗⃗ (𝑡) and the 

reference sinusoid ( 𝑀𝑦⃗⃗⃗⃗⃗⃗ (𝑡)  across all n trials, as well as the differences between their 

instantaneous phases across all n trials (Δ𝜙𝑥𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ (𝑡) were used to compute time-varying coherence 

(Formula 1). Notably, when calculating coherence at 60 Hz, individual EEG trials were first 

phase (re)-aligned by temporally shifting them by a maximum of 16.67 ms (34 samples in EEG) 

based on the phase at which they were presented. This ensured accurate estimation of coherence 

and causes only to minimal temporal smearing (see Tagging manipulation section, above). 

 

For each participant, six channels were selected based on the highest coherence 

averaged across the two tagging frequencies during the 1.2 s following search display onset 

(Arora et al., 2025; Hustá et al., 2025). Notably, previous studies have shown that the exact 

number of top channels selected does not substantially affect the results (Arora et al., 2025). 

To account for the fact that frequency-tagged stimuli evoke spatially specific neural responses 

that vary depending on their location on the screen, channel selection was performed separately 

for each of the 6 tagging locations (Minarik et al., 2023; see scalp topographies for the six 

locations in the supplementary materials; Figure S5). Coherence traces were then averaged 

across the top six selected channels, six tagging locations, and two tagging frequencies to 

produce a single coherence trace per condition for each participant, which was used for all 

subsequent EEG analyses. Coherence spectrograms (Figure 1C & 1D) were computed across 

frequencies from 56.8 Hz to 67.2 Hz in 0.8 Hz steps. 

𝑐𝑜ℎ (𝑡) =
|∑ 𝑀𝑥⃗⃗⃗⃗⃗⃗ 𝑛

𝑡𝑟 = 1 (𝑡) 𝑀𝑦⃗⃗⃗⃗⃗⃗ (𝑡) 𝑒𝑖Δ𝜙𝑥𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗(𝑡)|
2

𝑛 ∑ 𝑀𝑥⃗⃗⃗⃗⃗⃗ (𝑡)2  𝑛
𝑡𝑟=1 𝑀𝑦⃗⃗⃗⃗⃗⃗ (𝑡)2

 

 

(Formula 1) 
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To examine the trial-wise correlation between RIFT responses and behavioral 

performance (i.e., within participants) we calculated Trial-Ensemble Phase Similarity (TEPS) 

as a single trial measure of RIFT. TEPS quantifies the phase similarity between each individual 

trial and the average phase of all other trials, using a leave-one-trial-out approach. This measure 

ranges from 1 (perfect alignment) to –1 (perfect opposition), capturing how closely a trial’s 

phase follows the group-level phase dynamics over time (see Formula 2). Specifically, for each 

trial n and time point t, we extracted the instantaneous phase 𝜙𝐾(𝑡) from the bandpass-filtered 

EEG signal (±1.9 Hz) via the Hilbert transform. We then calculated the circular mean phase 

across all other trials 𝜙
−𝑘

(𝑡)  and defined TEPS as the cosine of the phase difference between 

 𝜙𝐾(𝑡) and 𝜙
−𝑘

(𝑡)  . 

𝑇𝐸𝑃𝑆𝑘 = cos( 𝜙𝐾(𝑡) − 𝜙
−𝑘

(𝑡) )  (Formula 2) 

Statistical Analysis 

 For the behavioral analysis, we excluded trials with reaction times shorter than 200 ms 

and used a paired-sample t-test to compare the mean response times (RTs) across conditions. 

To statistically compare coherence traces between conditions, individual traces were 

subtracted between conditions and resulting individual coherence-difference traces were 

subjected to a cluster-based permutation test (Maris & Oostenveld, 2007). First, one-sample t-

tests at the group level were performed for each time point to identify clusters where coherence 

traces differed significantly from zero (p < 0.05). Individual clusters were defined as one or 

more consecutive significant time points. For each cluster, the sum of t-values across all 

included timepoints (i.e., the t-mass) was computed and used as the cluster-level statistic. A 

null distribution of t-mass values was created by flipping the sign of a random selection of 

difference traces across 10,000 permutations and repeating the cluster identification procedure 

described above, except for only including the largest cluster in the null-distribution. Observed 
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clusters were considered statistically significant if their t-mass exceeded the 95th percentile of 

t-masses within the null distribution.  

To statistically assess correlations between neural responses in early visual cortex and 

behavioral performance, we computed trial-wise Pearson correlations between single trial 

RIFT responses (TEPS) and response times (including only trials with correct responses). We 

normalized the TEPS value for each location by subtracting the mean TEPS value at that 

location from the raw TEPS value for each trial, in order to eliminate differences in RIFT 

responses across locations (Figure S4). For each participant, we calculated the correlation 

between TEPS at each time point and RTs between trials, resulting in a time-resolved series of 

correlations. These time-series were assessed using the non-parametric cluster-based 

permutation test procedure described in the previous paragraph. 

Data and Code Availability 

The raw data and analysis code for this experiment is publicly available at 

https://osf.io/szuxa/. 
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