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C O G N I T I V E  N E U R O S C I E N C E

Dynamic context–based updating of object 
representations in the visual cortex
Giacomo Aldegheri1,2,3*, Surya Gayet1,4, Marius V. Peelen1

Objects in real-world scenes are often poorly or partially visible, for example because they are occluded or appear 
in the periphery. An additional challenge of real-world vision is that it is dynamic, causing the appearance of ob-
jects (e.g., their size and orientation) to change as we move. Notably, however, these changes are predictable from 
the three-dimensional structure of the surrounding scene. In two functional magnetic resonance imaging studies, 
we find that the visual cortex dynamically updates object representations using this predictive contextual infor-
mation. First, visual cortical representations of objects were enhanced when they rotated congruently (versus in-
congruently) with the surrounding scene. Second, the inferred orientation of the object could be decoded from 
visual cortex activity even when the object was fully occluded. These findings indicate that predictive processes in 
the visual cortex follow the geometric structure of the environment, providing a mechanism to support object 
perception in dynamic natural vision.

INTRODUCTION
Real-world vision is inherently inferential (1–3). For example, when 
part of a scene is occluded, we use contextual information to infer 
the occluded parts (4). Recent research has shown that such percep-
tual inferences activate regions of the visual cortex that are also acti-
vated during stimulus-driven perception. For example, neuroimaging 
studies in humans (5–7), and electrophysiological recordings in 
nonhuman primates (8) and rodents (9), revealed that patterns of 
neural activity in the early visual cortex (EVC) contained informa-
tion about occluded parts of scenes. Similarly, neuroimaging studies 
showed that scene context modulated late visual cortex (LVC) repre-
sentations of degraded and poorly visible objects, such that these rep-
resentations became more similar to the representations of fully visible 
objects (10, 11). These studies show that perceptual inferences based 
on (static) scene context do not only affect higher-level decisional 
stages (12) but also modulate and activate visual cortex representa-
tions, thereby shaping our perceptual experience (13, 14).

Perceptual inferences in the real world, however, are not only based 
on static context. As we move, our view of a scene—and the objects 
within that scene—changes. These changes depend on geometric 
constraints such as the way a three-dimensional (3D) rotation results 
in a 2D image change on the retina. Inanimate objects (e.g., a bed) 
usually remain stable relative to the scene background (e.g., a room). 
This allows for predicting the appearance of objects from new view-
points based solely on viewing the scene background. In a recent be-
havioral study, we found that temporarily occluded objects placed in 
scenes were automatically mentally rotated together with the chang-
ing viewpoint of the surrounding scene (15). Specifically, participants 
performed better on a challenging change discrimination task on 
the visual object, when the object reappeared in an orientation that 
was consistent with the (now rotated) background scene. Because the 
amount of scene rotation was unpredictable in that study, the new 
viewpoint of the object could only be inferred from the new viewpoint 

of the scene and not through continuous mental rotation of the ob-
ject alone. This finding provides evidence that predictions of 3D ob-
ject rotations can occur automatically, as a product of contextual 
information [in a subsequent study, we found this to occur for trans-
lation as well as rotation (16)]. To our knowledge, it is unknown wheth-
er such dynamic context predictions modulate and/or activate visual 
cortex activity in the way that static context predictions do. Are vi-
sual object representations (i.e., predictions about the 2D appearance 
of an object) dynamically updated to account for changes in scene 
viewpoint? If so, this would entail that changes in the 3D scene con-
text are used to generate predictions about the (novel) appearance of 
an object within that scene, potentially supporting object perception 
in dynamic, 3D, real-world environments.

Here, we used functional magnetic resonance imaging (fMRI) to 
address this question. In Experiment 1, we tested for modulatory ef-
fects of dynamic context predictions in the visual cortex. Specifical-
ly, we hypothesized that visual cortex representations are enhanced 
when objects reappear in a viewpoint that is congruent rather than 
incongruent with the (new) scene viewpoint. Note that we adopt an 
operational definition of “object representations,” referring specifi-
cally to the proximal shape of an object’s projection on the retina—
“wide” versus “narrow”—as decoded via multivariate pattern analysis 
(MVPA). In Experiment 2, we went one step further and tested whether 
dynamic context predictions of object appearance not only modu-
late but also directly activate the visual cortex. That is, we tested whether 
information about the new object orientation (derived from the scene 
viewpoint) would be present in the visual cortex, even when the ob-
ject itself is still occluded and thus fully invisible. If so, this would 
provide an important generalization of studies investigating static 
context predictions (5, 6, 8) or predictions involving highly simpli-
fied stimuli (17, 18) to the complexity of real-world environments.

In both fMRI studies, we focused on two regions of interest (ROIs) 
within the visual cortex: EVC (Brodmann areas 17 and 18), given its 
known role in the completion of partially visible scenes (5, 6, 8), and 
LVC (Brodmann areas 19 and 37), which has been implicated in 
context-driven inference of object properties (10, 11, 19). In Experi-
ment 1, we decoded, from activity patterns in these two ROIs, the 
proximal (i.e., 2D) shape of objects that, after an occlusion period, 
reappeared oriented congruently or incongruently with the rotation 
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of the surrounding scene (Fig. 1A). Critically, the initial viewpoint 
and amount of rotation were chosen such that objects could reap-
pear either in a “wide” or “narrow” projection on the 2D image 
plane (e.g., a bed viewed from the side versus the tail end). We found 
that representations of congruent objects, relative to incongruent 
objects, were enhanced in the EVC, as demonstrated by better 

discriminability of multivariate activity patterns (i.e., “wide” versus 
“narrow” decoding). This enhancement was accompanied by an 
overall lower activation at the whole-brain level, in line with effects 
of other forms of expectations in the visual cortex (20, 21). In Ex-
periment 2, we directly decoded the proximal shape of these same 
objects, but now during the period of occlusion (while no object was 

A

B

Fig. 1. Experimental design of Experiment 1. (A) Outline of the experimental design. The stimuli were images of rooms containing a central object, which could be 
shown at one of two possible orthogonal orientations (labeled A and B) relative to the room. The room could undergo two different total amounts of rotation: small (30°) 
and large (90°). After the room’s rotation, the object could be either in a congruent view (with the same orientation relative to the room as at the beginning of the trial) or 
in an incongruent view (with the other possible orientation B if the initial orientation was A or vice versa). (B) Examples of the full rotation sequence for a small and large 
rotation. The rotation was shown in discrete steps, and the object was fully occluded after the first two rotation steps until the whole rotation was complete. The interme-
diate scene orientations (including the last visible object orientation and the occluded orientations) were fixed (15°-20°-25°) for the 30° rotation trials and randomly 
sampled from the set {15°, 20°, 25°, 30°, …, 55°, 60°} for the 90° rotation trials, always shown in increasing order.
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visible on the screen), to determine whether object representations 
were updated coherently with the rotation of the scene context. Here, 
we found that proximal object shape could be reliably decoded in 
the LVC, providing evidence for purely top-down–driven activity 
reflecting the predicted object orientation, solely derived from the 
new scene viewpoint.

Together, these results indicate that scene completion in the hu-
man visual cortex generalizes to the prediction of object appearance 
across viewpoint changes in 3D scenes, providing a potential mech-
anism for efficiently processing partially visible scenes in dynamic real-
world environments.

RESULTS
Experimental design
In both fMRI experiments, participants viewed realistic indoor scenes 
(rooms) featuring a central object (a bed or couch) oriented in one 
of two possible angles relative to the scene (Fig. 1A). On each trial, 
the scene would start rotating around the vertical axis in discrete 
snapshots, causing a change in scene viewpoint (Fig. 1B). During the 
first two snapshots the object was fully visible, so that participants 
could learn how the object was positioned within the room. During 
the subsequent three snapshots the object was occluded, so that par-
ticipants would only see the rotating room. In the last snapshot, which 
occurred on every trial of Experiment 1, the occluder was removed, 
so that the object became visible again (Fig. 2A). Critically, the ob-
ject reappeared in an orientation that was either congruent or incon-
gruent with its original positioning within the room (Fig. 1A). The 
total amount of rotation (from initial to final viewpoint) was either 
30° or 90°, with each rotation amount occurring on half of the trials 
within each condition. The amount of rotation on a given trial 
remained unknown before the object was occluded. Therefore, the 
new orientation of the object could only be inferred from the new 
orientation of the room. The exact same stimuli (initial and final view-
points) were used for trials with congruently and incongruently rotated 
objects. Thus, whether an object was rotated congruently or incongruently 

could only be inferred through dynamic updating of the object ori-
entation, based on the changing viewpoint on the scene.

Another key aspect of the design is that the two initial object ori-
entations and the two scene rotation angles were chosen to result 
in two categorically distinct proximal object shapes in the final 
snapshot: either a wide or a narrow shape (i.e., the object evoked 
a wide or narrow projection on the 2D image plane). This was done 
to maximize the power of the multivariate decoding analyses, 
discriminating between patterns of activity evoked by wide versus 
narrow shapes.

Enhanced representations of congruently rotated objects 
in the EVC
In Experiment 1 (N = 35), the occluder was removed during the fi-
nal scene viewpoint, so that the object reappeared. On 75% of trials, 
the object reappeared in an orientation that was congruent with the 
rotation of the surrounding scene, whereas on the remaining 25% it 
was incongruent (Fig. 1A). The same physical stimuli counted as con-
gruent or incongruent depending only on the trial context, avoiding 
any stimulus-related confounds. We compared participants’ perfor-
mance in an orthogonal perceptual task (see Materials and Methods 
and Fig. 2), as well as blood oxygenation level dependent (BOLD) 
activity patterns in our two ROIs, evoked by congruent and incon-
gruent reappearing objects.

Behaviorally, participants were more accurate on congruent than 
incongruent trials [mean accuracy: 0.64 versus 0.60, t34  =  2.99, 
P = 0.005, d = 0.67, confidence interval (CI) = [0.01, 0.06]; Fig. 2B]. 
This indicates that the rotation of the scene influenced participants’ 
perceptual processing of the objects.

To examine the information about congruent and incongruent 
objects in the visual cortex, we trained linear classifiers to distin-
guish the object’s proximal shape (wide versus narrow projection) 
from BOLD activation patterns. These classifiers were trained on 
separate training runs, in which all possible final object and scene 
orientation combinations were shown without the preceding rota-
tion sequence (Fig. 3A). The purpose of these training runs was to 

A B

Fig. 2. Trial sequence and behavioral results of Experiment 1. (A) Temporal outline of a trial. After the rotation was complete, the occluder would disappear, revealing 
the object in either the congruent or incongruent view. The object would be briefly flashed (50 ms) twice, in two slightly different orientations. Participants had to deter-
mine whether the second orientation was clockwise or counterclockwise relative to the first. This task was fully orthogonal to the congruency of the object’s orientation, 
thus allowing us to test whether participants would automatically predict the orientation of the object from the (current) viewpoint on the surrounding scene. (B) Mean 
(and SEM) accuracy on the behavioral task for congruent and incongruent trials (left) and distribution of differences in accuracy (congruent minus incongruent) across 
participants. Participants were more accurate when the object’s final view was congruent. **P < 0.01.
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A

B

Fig. 3. Results of Experiment 1. (A) Cross-decoding scheme used in Experiment 1. Linear classifiers were trained to distinguish wide and narrow object views from corti-
cal responses obtained in separate training runs. The stimuli in these runs were the final views shown in the main task runs but presented without any preceding rotation 
sequence. To ensure that decoding was driven by the object’s proximal shape and not by covarying features such as the overall orientation of the scene, separate classi-
fiers were trained to distinguish wide and narrow views with different background orientations (30° and 90°). These were then tested on the (wide versus narrow) object 
views shown at the end of rotation sequences in the main task runs. Classifier information was then averaged across backgrounds and compared between congruent and 
incongruent trials. (B) Multivariate decoding results of Experiment 1: As the number of voxels to be selected in each ROI (based on the functional localizer) was arbitrary, 
we varied this number between 100 and 6000 in steps of 100 voxels, creating 60 sub-ROIs with an increasingly liberal inclusion criterion. Classifier information was then 
averaged across sub-ROIs, and the difference between congruent and incongruent was computed for each participant and each hemisphere. This difference is shown on 
the left side: Classifier information was significantly higher for congruent than incongruent object views in the EVC, indicating that more information about the proximal 
object shape was present in this ROI. On the other hand, this difference was not found in the LVC. The right side shows that these results were consistent across numbers 
of included voxels, averaged across participants and hemispheres (shaded regions denote SEM across participants). Asterisks denote significance of the difference be-
tween congruent and incongruent classifier information after applying TFCE (see Materials and Methods for details). *P < 0.05. n.s., not significant; a.u., arbitrary units.

D
ow

nloaded from
 https://w

w
w

.science.org at U
trecht U

niversity L
ibrary on January 22, 2026



Aldegheri et al., Sci. Adv. 12, eadw6726 (2026)     21 January 2026

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

5 of 15

estimate benchmark visual cortical responses to wide versus narrow 
object orientations, regardless of their contextual (in)congruency. 
Overall, the proximal shape of the objects could be decoded reliably 
above chance in both the EVC (mean classifier information 0.28, 
t34 = 13.85, P < 0.001, d = 2.39, CI = [0.24, 0.32]) and LVC (mean 
classifier information 0.11, t34  =  11.86, P  <  0.001, d  =  2.00, 
CI = [0.14, 0.20]). Thus, information about the object’s appearance 
was present throughout the visual cortex. Decoding accuracy was 
significantly higher in the EVC than LVC (t34 = 7.11, P < 0.001, 
d = 1.02, CI = [0.08, 0.14]), likely due to the stronger sensitivity of 
earlier visual areas to changes in an object’s appearance, such as 
across viewpoints (22).

Turning to our central analysis, we found that the shape of con-
gruent objects could be cross-decoded better than the shape of in-
congruent objects in the EVC, and this was consistent across a large 
range of voxel inclusion thresholds (Fig. 3B, congruent versus in-
congruent means across voxel numbers: 0.31 versus 0.25, t34 = 2.38, 
P = 0.023, d = 0.44, CI = [0.01, 0.11]). This result was consistent in 
both directions of decoding (classifiers trained on training runs and 
tested on main task runs or vice versa; fig. S7) and when using clas-
sification accuracy instead of classifier information (fig. S4). It was 
also consistent when only including the subset of trials in which the 
last visible object orientation was perfectly matched across small and 
large scene rotations (fig. S2). This indicates that the enhancement 
of object representations was driven by the scene context and not by 
differences in the visible object orientations before occlusion (see 
Materials and Methods for more details on this control analysis). On 
the other hand, no difference in cross-decoding performance be-
tween congruent and incongruent objects was found in the LVC 
(Fig. 3B, congruent versus incongruent means across voxel num-
bers: 0.17 versus 0.18, t34 = −0.37, P = 0.71, d = 0.06, CI = [−0.04, 
0.03]). To confirm that the difference between congruent and incon-
gruent cross-decoding was stronger in the EVC, we ran a within-
subject analysis of variance (ANOVA) with congruency (congruent 
and incongruent) and ROI (EVC and LVC) as factors. This analysis 
revealed a significant interaction between congruency and ROI 
(F1,34 = 12.18, P = 0.0014, η2

p = 0.26). Congruency with the scene’s 
rotation, then, enhances the information present in the visual cortex 
about the object’s proximal shape, and this effect appears to be spe-
cific to early stages of visual processing.

Incongruent objects elicited a larger univariate response
We next investigated whether the observed enhancement in multi-
variate decoding was accompanied by an overall higher univariate 
response. If participants were actively anticipating the appearance of 
an object that matched their scene-driven expectations, it is possible 
that attention to congruent objects would lead to a larger univariate 
response (23–25) . For example, a larger response would be expected 
if participants were actively maintaining the congruent object in work-
ing memory (25) or if attention was captured by the congruent ob-
ject (23, 24, 26). A higher signal-to-noise ratio under conditions 
with overall higher response amplitudes could then underlie the 
better multivariate decoding under the congruent condition. Alter-
natively, the enhancement of object information in the EVC could 
have occurred in the absence of a higher univariate response or even 
with a lower response. This would be more consistent with expecta-
tions resulting in a more efficient neural code (20, 21).

In the EVC, which showed enhanced decoding for congruent ob-
ject information, we did not observe any difference in univariate 

response, independently of the number of voxels included in the anal-
ysis (fig. S3): congruent versus incongruent means across voxel num-
bers −1.98 versus −1.90, t34 = −1.05, P = 0.302, d = 0.04, CI = [−0.22, 
0.07]. The mean activation on congruent trials was numerically lower. 
This result indicates that the enhanced multivariate decoding we 
observed in the EVC does not result from an overall larger uni-
variate response.

We next ran a whole-brain univariate contrast to determine 
whether any clusters in the brain display a significantly higher re-
sponse to either congruent or incongruent objects. There were no 
clusters responding more to congruent than incongruent objects. 
Conversely, several clusters responded more to incongruent than 
congruent objects (Fig. 4 and table S1). The most prominent clusters 
were found in the precuneus, angular gyrus, and inferior parietal 
lobe, areas associated with attentional reorienting and cognitive con-
trol. Together, these results indicate that the congruency of objects 
with the rotation of the scene evoked an overall smaller, not larger, 
univariate response. This finding is consistent with the idea of con-
gruent object representations being represented more efficiently in 
the visual cortex (20, 21). Moreover, it reinforces the conclusion of 
our recent behavioral work (15) that scene-driven object predictions 
are generated automatically rather than as a product of active and 
voluntary mental operations.

Multivariate enhancement covaried with activation in the 
higher-level visual cortex
The contextual enhancement observed in the EVC required the in-
tegration of information across large regions of the visual field. More-
over, it was based on high-level scene information. For these reasons, 
it most likely involved computations occurring in higher-level 
visual or associative areas. The previously reported enhanced de-
coding of degraded objects embedded in scenes, for example, is 
driven by feedback from scene-selective cortex (10, 14, 27). To re-
veal which brain regions were involved in the enhancement we ob-
served, we ran an information-activation coupling analysis (28). 
This analysis determines whether the univariate activation of par-
ticular voxels covaries, across time points after stimulus onset, with 
the accuracy of multivariate decoding in a seed region, in our case, 
the EVC. In particular, we tested whether this coupling was stronger 
under the congruent than the incongruent condition (see Materials 
and Methods for details). Locations in the brain that are more strong-
ly coupled with the decoding accuracy in the seed region on congru-
ent than incongruent trials are likely to be involved in the enhancement 
of congruent object representations.

We contrasted the coupling for congruent and incongruent con-
ditions across the whole brain as we did not have strong prior hy-
potheses about which regions might be the source of dynamic 
scene-driven predictions. This analysis revealed several clusters 
showing greater coupling for congruent than incongruent ob-
jects (Fig. 5 and table S2). We used the Neurosynth platform (29) 
to search for the terms most strongly associated with the peak coor-
dinates of these clusters, based on meta-analysis maps. This search (see 
table S3) revealed that two of the clusters were associated with vi-
sual motion and motion-sensitive area V5/MT (most associated 
terms: “visual motion,” “v5,” “motion,” and “mt”) as well as with 
object processing (“fusiform,” “objects,” and “object”). Other clusters 
were most strongly associated with the inferior frontal gyrus and pre-
motor cortex (“inferior frontal,” “premotor,” “imitation,” and “handed”), 
as well as with parietal cortex and spatial cognition (“spatial,” “parietal 
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occipital,” “visuo,” and “navigation”). These results suggest that the 
object predictions we observed involved the interaction between the 
EVC and higher-level visual areas related to motion and object pro-
cessing, as well as the inferior frontal gyrus, premotor and parietal 
cortices, which were previously implicated in coordinate transfor-
mations and mental rotation (30, 31).

Scene rotation updated object representations in the 
absence of visual input
Experiment 1 showed that scene-driven predictions about occluded 
objects enhance visual cortical object representations. This may in-
dicate that a representation of the predicted object shape is preacti-
vated in the visual cortex, based on changes in scene viewpoint. 
Alternatively, it may reflect a reactive signal that distinguishes “con-
gruent” from “incongruent” scenes (i.e., devoid of any visual con-
tent) and modulates visual cortex activity. Previous works have 
found that expectations based on environmental regularities, be-
yond modulating visually evoked activity, can also drive the infer-
ence of occluded parts of visual scenes (5, 6, 8) and elicit visual 
predictions in the absence of sensory input (17, 18). In Experiment 2 
(N = 30), we therefore set out to directly investigate whether changes in 
scene viewpoint preemptively evoke a visual representation of the predict-
ed object while the object was fully invisible (i.e., during occlusion).

The experimental design was largely consistent with that of Ex-
periment 1, except that in Experiment 2, the central object remained 
occluded until the end of the trial. This made it possible to directly 
examine the internal representation of the object. Moreover, in this 
experiment, participants did not have to actively perform a visual 
discrimination task on the object, providing a strong test for the au-
tomaticity of scene-driven object updating. To ensure that they still 
paid attention to the stimulus sequence, the object reappeared on 
12.5% of trials. When the object did reappear, it was always oriented 
congruently. At the end of each run, participants had to report the 
number of reappearances within the run. The data from these catch 
trials were excluded from all subsequent analyses.

As in Experiment 1, we trained linear classifiers on separate runs 
to discriminate the proximal shape of objects (wide or narrow; Fig. 6A). 
In this case, the classifiers were trained on BOLD responses to visu-
ally presented objects without any background and tested on BOLD 
responses to scenes with occluded objects, thus cross-decoding 
from visually evoked to purely top-down responses. We analyzed 
the same ROIs as in Experiment 1, the EVC and LVC, again testing 
for robustness across varying numbers of included voxels.

We found that the object’s proximal shape could be decoded above 
chance in the visual cortex, consistently across a wide range of voxel 
numbers (Fig. 6B). In the LVC, decoding was reliably above chance 
(mean classifier information across sub-ROIs: 0.061 ± 0.002 SEM, 
t29 = 2.96, P = 0.006, d = 0.54, CI = [0.02, 0.1]). This result was con-
sistent without any participant exclusions, despite noisier data 
(fig. S6), when using classification accuracy instead of classifier in-
formation as a measure of decoding (fig. S4) and across both decoding 
directions (fig. S7). On the other hand, decoding was not sig-
nificantly above chance in the EVC: mean classifier information 
across sub-ROIs was 0.064  ±  0.004 SEM, t29  =  1.72, P  =  0.095, 
d = 0.31, CI = [−0.01, 0.14]. However, a paired t test comparing 
classifier information across the two ROIs revealed no significant 
difference between them (t29 = 0.12, P = 0.902, d = 0.02, CI = [−0.06, 
0.07]), suggesting that information about the occluded object’s ori-
entation was not strongly confined to any specific region. This result 
shows that viewpoint changes in a scene can elicit expectations of 
object appearance in the visual cortex, even when the objects are 
fully invisible.

DISCUSSION
Vision in complex real-world environments often requires inferring 
the properties of temporarily invisible objects (32). The ability of the 
human visual cortex to predict incomplete visual scenes has been 
studied extensively (5, 6, 33), but it is still an open question how this 
ability can generalize to predictions based on complex regularities 

Fig. 4. Results of the univariate contrast between incongruent and congruent trials. Several clusters responded more strongly to incongruent trials, whereas none 
responded more to congruent ones. This result suggests that incongruently oriented objects elicited a “surprise” response.
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of the environment, such as its 3D geometry. Here, in two neuroim-
aging studies, we show that activity patterns in the visual cortex 
reflect predictions of the appearance of an occluded object across view-
point changes in a 3D scene.

In Experiment 1, we found that the proximal shape of objects (a 
wide versus narrow projection on the 2D image plane) in a rotating 
scene was decoded better when the objects emerged from occlusion 
in an orientation that was congruent with the new scene viewpoint, 
compared to incongruent objects. This multivariate enhancement was 
accompanied by an overall reduced amount of (i.e., univariate) brain 
activation, consistent with an effect of expectation on visual repre-
sentations (20, 21). In Experiment 2, we found that these predictions 
of object appearance from scene viewpoint could elicit visual repre-
sentations in the absence of visual input. We found that the proxi-
mal shape of the rotated object (i.e., a wide versus narrow projection) 
could be decoded from visual cortex activity, even when the object 
remained fully occluded. These results show that temporarily invis-
ible objects can evoke a visual representation, as informed by the 
surrounding (visible) scene context. To do so, the visual cortex capi-
talizes on the predictable way in which objects in the real world ro-
tate coherently with the surrounding scene. Such seamless integration 
of visible and invisible information can be extremely useful in track-
ing objects across periods of invisibility, as is often required in daily 
life (32).

Across our two experiments, as well as in previous behavioral studies 
(15, 16), we found multiple converging lines of evidence suggesting that 

scene-driven predictions occur automatically: (i) They can affect be-
havioral performance in an orthogonal task [Experiment 1 and previ-
ous behavioral studies (15,  16)] and can be reliably decoded in the 
absence of any explicit task (Experiment 2). Thus, they do not seem to 
be driven by task requirements. (ii) In Experiment 1, we found that in-
congruent objects elicited a larger univariate response than congruent 
ones. If participants were actively maintaining an attentional tem-
plate of the predicted object, we would expect objects matching this 
template to be boosted, evoking a higher response (23–26). (iii) In 
two previous behavioral studies (15, 16) with large participant sam-
ples (N = 152 and 151), we found that the effect of scene-driven 
expectations on task accuracy was entirely uncorrelated with par-
ticipants’ responses in a questionnaire assessing their behavioral 
strategy. This provides further evidence that these expectations were 
not driven by an explicit, voluntary strategy. Relatedly, the effect of 
scene-driven expectations was more likely to be driven by real-world 
structural regularities rather than by short-term regularities extract-
ed during the experiment. Although, in Experiment 1, congruent 
object orientations were shown on a majority of trials, thus conflat-
ing their real-world congruency with their short-term frequency, in 
previous behavioral studies (15, 16), we found that short-term fre-
quency was not necessary for congruency effects on task performance. 
Even when the congruent object view was shown on a minority of 
trials, participants’ predictions still followed real-world (i.e., scene-
congruent) expectations. Moreover, in Experiment 2, in which the 
congruent object orientation was only shown on a small minority of 

B

A

Fig. 5. Information-activation coupling analysis. (A) Illustration of the information-activation coupling analysis. Given a seed time course of multivariate classifier infor-
mation in an ROI (in our case, the EVC) after stimulus onset, and a target time course of univariate activation for each voxel in the brain, the per-voxel correlation with the 
seed time course is computed across the whole brain. These correlations are then compared between the congruent and incongruent conditions to reveal voxels that are 
more strongly coupled with multivariate information in the EVC under the congruent condition. (B) Results of the one-sided univariate contrast between the correlation 
maps for congruent and incongruent trials. Several clusters were found that were significantly more coupled on congruent than incongruent trials, corresponding to the 
higher-level visual cortex, parietal, premotor, and inferior frontal cortex (see text for details).
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B

A

Fig. 6. Results of Experiment 2. (A) Multivariate cross-decoding scheme used in Experiment 2. Linear classifiers were trained to distinguish wide and narrow object views 
from BOLD activity in training runs. In these runs, objects were shown without any background. Object views were grouped in the “wide” and “narrow” categories based 
on their proximal shape, independently of their orientation relative to the scene and the viewer. Thus, the “wide” category included both A30° and B90°, and the “narrow” 
category included both B30° and A90°. The classifiers thus trained were then tested on the final period of trials in the main task runs, in which the scene had completed 
its rotation, and the object was still occluded. The goal was to determine whether an expectation of the occluded object’s rotated view was present in the visual cortex 
despite the object not being visible. (B) Results of the multivariate decoding analysis of Experiment 2. Varying the number of voxels included in the analysis, we found that 
the expected proximal object shape could be reliably decoded above chance in the visual cortex. In particular, classifier information was positive regardless of the number 
of included voxels in the LVC, although the difference between the LVC and EVC was not significant, indicating that information about object shape was present through-
out the visual cortex (see text for details). Left: Distribution of classifier information, averaged across voxel numbers, for each participant and hemisphere. Right: Classifier 
information, averaged across hemispheres, for each number of included voxels. Shaded regions indicate SEM across participants, and asterisks indicate significance after 
TFCE. *P < 0.05; **P < 0.01.
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trials (remaining under occlusion on most trials), the predicted ori-
entation could still be decoded above chance, providing further evi-
dence for the automatic and long-term nature of these scene-driven 
expectations. Overall, the automaticity of these effects and their de-
pendence on real-world regularities, rather than short-term contingen-
cies, supports their potential relevance to real-world predictive vision.

In Experiment 1, the modulatory effect of scene-object congru-
ency on orientation decoding was specific to the EVC, suggesting that 
expectations modulated relatively low-level visual representations. Pos-
sible features driving this effect include the differences in retinal 
size, stimulated area, or edge orientations between wide and narrow 
views of the objects. The present experiment was not designed to 
distinguish between the roles of various low-level features; however, 
this question remains open for future investigation. Conversely, in 
Experiment 2, orientation decoding of the occluded object was sig-
nificant only in the LVC. This discrepancy across experiments may 
reflect that purely top-down generated object predictions are repre-
sented relatively more coarsely, providing a “scaffold” to modulate 
more fine-grained, stimulus-evoked responses in the EVC through 
feedback projections. This interpretation is in line with the results of 
the coupling analysis of Experiment 1, showing that univariate ac-
tivity in the occipitotemporal cortex (in the proximity of motion-
selective and object-selective regions) was more strongly coupled 
with congruent than incongruent orientation decoding in the EVC. 
This dissociation has been observed in previous studies as well: The 
EVC has been implicated in a wide variety of cognitive, but visually 
based, processes, including mental imagery (34), working memory 
(35), mental rotation (36, 37), tracking of occluded objects (38), and 
intuitive physics (39, 40). All these cognitive operations share a fun-
damentally spatial nature: They require maintaining or manipulat-
ing visual information at a specific location in (retinotopic) space. 
On the other hand, very similar processes that are less spatially spe-
cific seem to involve the LVC instead. For example, mental imagery 
only involves the EVC when the location and scale of the stimulus to 
be imagined is clearly specified, and it involves the LVC otherwise 
(34). Similarly, the scene-driven modulation of a visible object’s per-
ceived size in the Ponzo illusion (41, 42) occurs in the EVC (43, 44), 
whereas the size of an object’s search template, a top-down signal 
without a specific position in the scene, is observed in the LVC (19). 
Consistently with these prior findings, in our study, the difference in 
tasks between Experiments 1 and 2 potentially also contributed to 
the discrepancy in the involved processing regions. The task of Ex-
periment 1 involved a precise perceptual comparison of two subtly 
different stimuli, which likely requires the fine-grained spatial reso-
lution of the EVC. Experiment 2, on the other hand, featured a much 
less visually precise task (detecting the reappearance of an object 
from occlusion), which may not require the fine-grained precision 
or retinotopic organization typical of the EVC.

The present work focuses on investigating the content of expec-
tations based on scene context: a prediction of the object’s proximal 
shape. Future work should investigate the format of the representa-
tions that make these expectations possible. One possibility is that 
the scene is represented as a structural description in allocentric 3D 
coordinates (45–47) and then translated back to retinotopic coordi-
nates, leading to the egocentric 2D shape predictions we observed in 
our study. This kind of explicit coordinate transformation has been 
proposed to underlie spatial navigation and mental imagery (48, 49). 
Alternatively, predictions might be represented exclusively in terms 
of egocentric views, with no involvement of explicit 3D descriptions. 

Human behavior in spatial navigation tasks, for example, is consis-
tent with scene representations in terms of 2D views (50–52). More-
over, recent works have shown that objects’ proximal shape is 
represented explicitly in several tasks that involve the 3D structure, 
such as mental rotation (53, 54) or searching for objects at different 
depths in a scene (19, 55). Future studies could shed light on the 
representations underlying scene-driven predictions, for example, 
by investigating how these predictions are affected by 3D features 
(such as the angle of rotation) and 2D features (such as egocentric 
motion patterns), as done in a recent work on mental rotation (53).

Regardless of whether the representations that participants relied 
on in our study are based on egocentric views or the 3D structure, 
our results suggest that humans can represent scene-object relations 
in a sufficiently rich manner to support predictions across changes 
in viewpoint. This extends a long line of empirical and theoretical 
work investigating how the internal representation of objects re-
flects their properties in the external world (56–58). This includes 
the ability to mentally rotate objects (59) or to simulate their phys-
ical dynamics (60). It is possible that these internal representations 
also incorporate models of how objects interact with their context, 
including (but not limited to) how objects rotate concurrently with 
the surrounding scene. One way to efficiently process these kinds of 
spatial relations in complex scenes is to represent them in a hierar-
chical manner, linking scenes to the objects they contain and linking 
objects to their parts. These kinds of hierarchical representations are 
extensively used in computer graphics and game engines (61, 62), 
and artificial intelligence research has addressed the problem of how 
they can be extracted from unstructured visual input (63–68). Some 
evidence exists that humans process scenes hierarchically (69–71), 
suggesting that a similar representation might underlie the present 
results. Alternatively, the link between scenes and objects might be 
represented in a “flat,” nonhierarchical manner, similar to relations 
between objects (72) or social interactions between agents (73). 
To adjudicate between these two alternatives, future studies could 
test whether the effect of scene rotation on object representations 
are asymmetric—scenes can rotate objects, but not vice versa, argu-
ing for hierarchical representations, or symmetric, arguing for 
flat representations.

In conclusion, the current findings show that the visual cortex gen-
erates visual predictions derived from the 3D structure of scenes. 
These findings suggest that previously reported mechanisms for per-
ceptual predictions (e.g., of partially occluded 2D images) general-
ize to structured and dynamic real-world environments.

MATERIALS AND METHODS
Participants
Participants were recruited through the Radboud University partici-
pant pool (SONA systems) and received a monetary reimbursement 
for their participation. They provided informed consent before the 
experimental session. The study was conducted in accordance with 
the institutional guidelines of the local ethical committee (CMO re-
gion Arnhem-Nijmegen, The Netherlands, protocol CMO2014/288). 
For both studies, we aimed to collect a predetermined sample size of 
34 to achieve 80% power for detecting a medium-sized (d  >  0.5) 
within-subject effect using a two-tailed one-sample or paired t test. In 
Experiment 1, a total of 35 participants took part in the study (21 
females, mean age = 24.1, SD = 4.4). In Experiment 2, a total of 
34 participants took part, of which 4 were excluded due to not paying 
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sufficient attention to the stimulus sequences, as measured through our 
simple task of counting object reappearances. Specifically, at the end of 
each main task run, participants were asked to report how many times 
the object had reappeared after the occlusion period. The Pearson’s 
correlation, across runs, between the true and reported number of 
object reappearances was used as a measure of each participant’s ac-
curacy. Specifically, participants were excluded when their average 
correlation was more than two interquartile ranges away from the first 
quartile. The final sample size was then 30 participants (16 females, 
mean age = 25.2, SD = 8.5). These participants’ responses were posi-
tively correlated with the true values (mean r = 0.89, minimum = 0.39), 
with a majority (25/30) having correlations higher than 0.80, as shown 
in fig. S5.

Apparatus
Participants viewed the stimuli through a mirror mounted on the 
head coil of the scanner. In Experiment 1, stimuli were presented on 
a 32-inch BOLDscreen monitor (Cambridge Research) with a reso-
lution of 1920 by 1080 px and 120-Hz refresh rate. The total viewing 
distance (eyes from mirror + mirror from screen) was 1206 mm. In 
Experiment 2, stimuli were presented on an EIKI LC-XL100 projec-
tor with a resolution of 1024 by 768 px and 60-Hz refresh rate, back-
projected onto a projection screen (Macada DAP diffuse KBA) attached 
to the back of the scanner bore. The total viewing distance was 
1440 mm. In both experiments, stimuli were presented using Psych-
toolbox (74) in MATLAB R2017b. Participants provided responses 
on a HHSC-2x4-C button box.

Stimuli
In both experiments, the stimuli for the main task and classifier 
training runs were 20 different indoor scenes (fig. S1) modeled in 
Blender 2.80 and rendered using the Cycles rendering engine for 
realistic lighting. The scenes all had the same layout (floor, two walls 
at a right angle, and a main object in the center) but contained vari-
ous additional objects, adjacent to the walls, and different textures 
on the walls and floors to increase their perceptual variability. The 
central object was a couch for half of the scenes and a bed for the 
other half. The retinal size of the central objects was approximately 
the same across scenes. For each scene, a range of viewpoints was 
rendered, by rotating the entire scene around the vertical axis (out of 
the image plane) between 0° and 90°, in steps of 5°. A subset of these 
viewpoints was presented on each trial: The trial always started with 
the 0° viewpoint and ended either with 30° or 90°. The three inter-
mediate viewpoints were chosen in the following way: For 30° rota-
tion trials, a fixed sequence (15°, 20°, and 25°) of intermediate 
viewpoints was shown. For 90° rotation trials, three intermediate 
viewpoints were randomly sampled (without replacement) from the 
set {15°, 20°, 25°, …, 55°, 60°}, and shown in increasing order. The 
object was occluded after the first intermediate viewpoint. In Ex-
periment 1, this meant that the last visible object viewpoint could 
differ between 30° and 90° rotation trials. This did not substantially 
affect the results because consistent findings were obtained when 
using a subselection of trials in which the last visible object view-
point was perfectly matched between rotation conditions (fig. S2). 
Moreover, in Experiment 2, the last visible object viewpoint was 
fixed at 10° for both rotation conditions, thus avoiding any potential 
influence of the last visible object orientation on the decoding of the 
expected object orientations.

In all scenes, the two walls were oriented such that the scene was 
fully visible from all the viewpoints. The scenes were presented at 
the center of the screen with a size of 20.53 by 11.64 degrees of vi-
sual angle (dva), surrounded by a gray background. The occluder 
was a gray rectangle (same color as the background), which had the 
height and width of the largest possible view of the object in that 
particular scene (average size: 5.50 dva by 2.86 dva) plus a margin 
(horizontal: 1.08 dva; vertical: 0.43 dva) to ensure the object was 
fully covered and its shadow was not visible, which would have pro-
vided a cue to its orientation. The fixation dot (radius: 0.1 dva, 
shown at the center of the central object, 3.24 dva below the center 
of the screen) was always visible on top of the images.

In Experiment 1, the stimuli for the classifier training runs were 
the final views of the objects shown in the Main Task runs, with the 
scene background (Fig. 3A). In Experiment 2, they were the same 
objects but without the scene background (Fig. 6A). The size of the 
stimuli was the same as in the Main Task runs.

General procedure
In Experiment 1, before the fMRI scanning session, participants 
performed a short practice session (40 trials, around 10-min dura-
tion) to familiarize themselves with the main task of the experiment. 
During this session, they received feedback on every trial, and they 
saw their overall accuracy at the end of the session as well. After the 
practice, they were also instructed about the other tasks they would 
have to perform in the scanner (one-back task in the Classifier train-
ing and Functional Localizer runs). During the 5-min anatomical 
scan, they practiced the main task again, also with trial-by-trial 
feedback. In total, participants were in the scanner for 12 functional 
runs (~75 min). Each functional run began and ended with 15 s 
of fixation.

In Experiment 2, given the less challenging task, there was no 
practice session. Before entering the scanner, participants were in-
structed about the main task they were going to perform and were 
shown example stimuli. They were also told that, on some runs, they 
would have to detect repeated images (one-back task in the Classi-
fier training and Functional Localizer runs). During the 5-min ana-
tomical scan, they practiced the main task, receiving feedback. 
Participants were in the scanner for a total of 13 functional runs 
(~70 min). One participant included in the final sample (and one 
excluded participant) only completed seven main task runs instead 
of eight.

Procedure: Main task runs
In Experiment 1, participants completed seven runs of the main task, 
each consisting of 48 trials (336 trials in total). Within each run, 
36 trials (75%) featured the congruent object orientation at the end of 
the stimulus sequence and the remaining 12 (25%) the incongruent 
orientation. We chose to present congruent orientations on a major-
ity of trials because our previous behavioral work (15) revealed that 
the behavioral accuracy difference between conditions was highest 
with this design (although the effect remained present even when 
the incongruent trials outnumbered the congruent trials). By choos-
ing the design in which the effect was strongest, we maximized the 
power for uncovering the neural correlates of this behavioral effect. 
Both congruent and incongruent trials were equally divided among 
the four possible initial orientation/amount of rotation combina-
tions (A30°, A90°, B30°, and B90°).
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Crucially, the behavioral task that participants had to perform 
was fully orthogonal to the congruency manipulation: They did not 
have to explicitly judge whether the object remained in the same 
orientation relative to the beginning of the trial or to explicitly pre-
dict its upcoming view after the occlusion period. Participants were 
told that their task pertains exclusively to the final viewpoint but 
were nonetheless instructed to remain attentive during the whole 
stimulus sequence. Each trial (Fig. 2A) began with a fixation dot for 
500 ms, followed by the initial view of the scene for 2000 ms. The 
scene then started rotating, in three intermediate views, each shown 
for 500 ms. The object was fully occluded starting from the second 
of these intermediate views. The final view of the scene, with the 
object still occluded, was displayed for a randomly jittered time be-
tween 1500 and 2000 ms. The object then reappeared and was brief-
ly flashed twice (with the scene background always present) for 
50 ms each, with a 100-ms interstimulus interval in between. We 
refer to these two brief presentations of the object as the probes. On 
a given trial, the second probe was rotated clockwise or counterclock-
wise, with equal probability, relative to the first, and the participants’ 
task was to indicate “clockwise” or “counterclockwise” using the in-
dex or middle finger of their right hand, respectively. Participants 
had a maximum of 1500 ms to respond, after which the experiment 
would skip to the next trial and the current trial would be counted 
as missed. The duration of the initial fixation period for the follow-
ing trial was adjusted to compensate for the participants’ response 
time on the current trial to ensure that the overall duration of each 
run was constant. The first probe’s orientation was randomly sam-
pled from a normal distribution centered around the congruent or 
incongruent orientation (depending on the current trial’s condition), 
with an SD of 1°, to add a small amount of jitter and then rounded 
to the nearest integer. The second probe was rotated, clockwise or 
counterclockwise, relative to the first by an angle that was titrated 
using a 2-down, 1-up staircase, to keep the task difficulty constant 
across participants. To ensure that the visual stimuli in congruent 
and incongruent trials did not differ, and thus avoid any stimulus-
related confounds, a single staircase was used across both Congru-
ency conditions, allowing for accuracy differences between conditions. 
Unlike in the practice session, participants did not receive feedback 
on every trial to avoid any possible effects on the fMRI response of 
differing feedback between congruent and incongruent conditions. 
Instead, their overall accuracy within a run was displayed at the end 
of the run.

In Experiment 2, participants completed eight runs of the main 
task (40 trials each) for a total of 320 trials. The stimulus sequence 
and durations were the same as in Experiment 1. The main differ-
ence was that, on a majority of trials, the central object was 
not shown again after the occlusion period. It was shown only 
on 40/320 trials (12.5%), randomly spread across the eight runs (be-
tween 2 and 10 per run). On these trials, the occluder disappeared, 
revealing the object in the final orientation (there was no congru-
ency manipulation in this experiment) for 200 ms. To encourage 
participants to pay attention to the stimulus sequence, at the end of 
each run, they were asked to report on how many trials the object 
reappeared. An adjustable number (initially set to 0) was shown on 
screen, and participants could increase it using their middle finger 
or decrease it using their index finger. To confirm their estimate, 
they used their ring finger. They were then shown both their esti-
mate and the correct number as feedback.

Procedure: Classifier training runs
The purpose of the classifier training runs was to estimate bench-
mark response patterns to the central objects used in our main task, 
without the context of the whole rotation sequence. In both experi-
ments, participants completed three training runs.

In Experiment 1, the images displayed in the training runs were 
the final frames of the sequences shown in the main task. They were 
presented in mini-blocks corresponding to the four possible object 
orientation/scene rotation combinations (A30°, A90°, B30°, and B90°; 
see Fig. 3A). Each mini-block consisted of 18 images (different scene 
exemplars, all in the same orientation/rotation combination), with 
each image presented for 350 ms and followed by a 400-ms blank 
interval (each mini-block lasted 13.5 s in total). After a series of four 
mini-blocks (54 s), a longer blank interval was shown for 6.75 s. The 
participants’ task was to press any button whenever the exact same 
image was repeated twice in a row (one-back task). Each run in-
cluded 20 mini-blocks (divided into five blocks).

In Experiment 2, the objects in the training runs were shown 
without any scene background (Fig. 6A). Aside from the absence of 
a background, the position and size of the stimuli were the same as 
in the main task runs. Different object exemplars were grouped in 
mini-blocks by their proximal shape, such that a given mini-block 
contained exclusively wide or exclusively narrow objects, including 
different initial orientation and rotation combinations (wide mini-
blocks included A30° and B90°, and narrow mini-blocks included 
B30° and A90°). Each mini-block consisted of nine images (6.75 s in 
total), each image being shown for 350 ms and followed by a 400-ms 
blank interval. After a series of eight mini-blocks (54 s), a longer 
blank interval was shown for 6.75 s. Participants performed the 
same one-back task as in Experiment 1.

Procedure: Functional localizer runs
In both experiments, participants completed two runs of a function-
al localizer scan used for ROI voxel selection. The stimuli used in the 
functional localizer runs in both experiments were the same as those 
in a well-established functional localization study (75). They included 
images from four stimulus categories (objects, scrambled objects, 
faces, and scenes) shown in separate mini-blocks, each lasting 15 s 
and comprising 20 unique images. Each image was shown for 450 ms and 
followed by a 300-ms blank. Each localizer run included 16 mini-
blocks (divided into four blocks, each containing all four stimulus cat-
egories in varying order). Participants performed the same one-back 
task as in the classifier training runs. Stimuli were shown with a size of 
12 dva by 12 dva, against a uniform gray background.

Acquisition and preprocessing of fMRI data
In Experiment 1, fMRI data were collected on a 3T MAGNETOM 
Skyra MR scanner (Siemens AG, Healthcare Sector, Erlangen, Germany) 
using a 32-channel head coil. Functional data were acquired using a 
T2*-weighted gradient echo planar imaging (EPI) sequence, with a 
6× multiband acceleration factor [repetition time (TR) 1 s, echo time 
(TE) 35.2 ms, flip angle 60°, 2-mm isotropic voxels, 66 slices]. For the 
main task runs, 404 images were acquired per run, and 333 and 
318 images were acquired for the classifier training and functional 
localizer runs, respectively.

In Experiment 2, fMRI data were collected on a 3T MAGNETOM 
PrismaFit MR scanner (Siemens AG, Healthcare Sector, Erlangen, 
Germany) using a 32-channel head coil. Functional data were acquired 
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using a T2*-weighted gradient echo EPI sequence, with a 6× multi-
band acceleration factor (TR 1 s, TE 34 ms, flip angle 60°, 2-mm 
isotropic voxels, 66 slices). For the main task runs, 315 images per 
run were acquired, and 333 and 318 images were acquired for the 
classifier training and functional localizer runs, respectively.

In both experiments, at the start of the scanning session, a high-
resolution T1-weighted anatomical scan was acquired using a Mag-
netization Prepared Rapid Gradient Echo (MPRAGE) sequence [TR 
2.3 s, TE 3.03 ms, flip angle 8°, 1-mm isotropic voxels, 192 sagittal 
slices, field of view (FOV) 256 mm]. The data were preprocessed us-
ing SPM12 (76) functions through the Nipype 1.11.0 (77) interface 
in Python. The functional volumes were field map–corrected, spa-
tially realigned, coregistered with the anatomical image, normalized 
to MNI 152 space using the template provided in SPM, and smoothed 
with a FWHM (full width at half maximum) Gaussian filter of 3 mm.

General linear model estimation
The responses evoked by each of the stimulus types relevant to our 
analyses were modeled using general linear models (GLMs) in SPM12 
(76), through the Nipype 1.11.0 (77) interface. In both experiments 
and in all GLM analyses, time series were convolved with the ca-
nonical hemodynamic response function (HRF) provided in SPM12.

In Experiment 1, in the main task, the onsets of the final object 
views were modeled as impulse functions as they were very rapid 
visual events. We included regressors for each combination of object 
orientation and final scene rotation (A30°, A90°, B30°, and B90°), 
separately for the congruent and incongruent trials. Because the 
congruent condition included three times as many trials as the in-
congruent condition, estimating beta weights using all trials would 
have led to a higher signal-to-noise ratio and consequently a spuri-
ously higher decoding accuracy. To correct this imbalance, we ran-
domly split the 36 congruent trials within each run into three 
subsets of 12 trials each (thereby matching the number of incongru-
ent trials). The random splits were determined using a specified seed 
(different for each subject and run) for reproducibility. Each of the 
splits was modeled as a separate condition in the GLM, and all sub-
sequent analyses were performed separately on each split and then 
averaged. In the classifier training runs, individual mini-blocks were 
modeled as boxcars. As in the main task runs, we included regres-
sors for each object orientation/scene rotation combination, yield-
ing one beta weight map per condition, per mini-block, per run. For 
the univariate analysis, we modeled the onsets of the final object 
views as impulse functions. We only included regressors for the two 
congruency conditions, congruent and incongruent, obtaining two 
beta weight maps per run.

In Experiment 2, in both the main task and classifier training 
runs, we only included regressors for the two proximal object shapes 
(wide and narrow), rather than the four separate orientation/rota-
tion combinations. The reason for this was that the objects in the 
training runs were presented without any background, removing 
the need to match images by background in the GLM and MVPA 
analyses (Fig. 6A, also see the section “Multivariate pattern analy-
sis”). In the training run mini-blocks, objects were also grouped by 
their proximal shape regardless of the specific orientation-rotation 
combination. In the main task runs, the entire period from the onset 
of the final scene view to its offset was modeled as a boxcar as we 
assumed a prediction of the object in its updated orientation would 
be present throughout this period. Trials in which the object reappeared 

after the occlusion period were excluded from the analysis. We esti-
mated one beta weight map per run per condition (wide and narrow). 
In the classifier training runs, each mini-block was modeled as a box-
car. We estimated one beta weight map per mini-block, per run, 
per condition.

In the functional localizer runs of both experiments, mini-blocks 
belonging to the four stimulus categories (objects, scrambled objects, 
faces, and scenes) were modeled as boxcars, yielding one beta weight 
map per condition per run.

All GLMs included six motion parameters and one run-based 
regressor as nuisance regressors. As participants were performing a 
one-back task in the classifier training and localizer runs, these runs 
included an additional nuisance regressor synchronized to partici-
pants’ button presses (modeled as impulse functions).

ROI definition
To select voxels for inclusion in our visual cortex ROIs (in both ex-
periments), we used subject-level t-contrast maps estimated using 
data from the functional localizers, contrasting stimuli (both objects 
and scrambled objects) against the fixation baseline. These maps 
were intersected with an anatomical mask corresponding to Brod-
mann areas 17 and 18 [corresponding to areas V1 and V2 (78)] for 
the EVC and Brodmann areas 19 and 37 for the LVC (79). BA19 in-
cludes the lateral occipital gyrus and the superior occipital gyrus, 
whereas BA37 corresponds to the occipitotemporal cortex and in-
cludes the posterior fusiform gyrus and the posterior inferior tem-
poral gyrus. The LVC ROI includes high-level visual regions such as 
the object-selective LO (lateral occipital) and pFs (posterior fusi-
form gyrus), as well as the motion-selective hMT+. Each partici-
pant’s map, in each hemisphere, was then thresholded to only include 
the top N most responsive voxels in the stimulus versus baseline 
contrast, as measured by the t-statistic. The number of selected vox-
els (N) ranged from 100 to 6000 in steps of 100, creating 60 sub-
ROIs per each ROI and hemisphere, with an increasingly liberal 
voxel inclusion criterion.

Multivariate pattern analysis
Our cross-decoding analysis consisted of training linear classifiers 
on benchmark responses (beta weights) to objects devoid of any 
context (sequence), obtained from the classifier training runs, and 
testing them on responses to objects appearing at the end of the ro-
tation sequence in Experiment 1 (Fig.  3A) and on responses to 
scenes with fully occluded objects in Experiment 2 (Fig. 6A).

In Experiment 1, to decode the stimulus feature of interest—
proximal object shape (wide versus narrow), we separately trained 
classifiers to discriminate between the A and B object orientations 
embedded in scenes rotated by 30° or 90° (Fig. 3A), which corre-
sponds to discriminating conditions A30° and B30° and A90° and 
B90°, in such a way as to classify the object’s shape against a matched 
background. The accuracies of classifiers trained on the two back-
grounds were then averaged. The three splits of congruent trials (see 
the section “General linear model estimation”) were also decoded 
separately, and accuracy was then averaged across them. The labels 
of the beta weights corresponding to incongruent trials in the main 
task runs corresponded to the object orientation that was actually 
presented on the screen, not the one expected given the context, as 
our goal was to assess how the same visual stimuli are processed dif-
ferently depending on the context.
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In Experiment 2, as objects were displayed without any back-
ground in the classifier training runs, we did not need to implement 
the background-matched decoding. In addition, different views that 
resulted in the same proximal shape were grouped together in the 
same mini-blocks of the classifier training runs (e.g., A30° and B90° 
were grouped together as wide). Classifiers were trained to discrim-
inate between wide and narrow objects, and tested on responses to 
the final views of the scene in the main task runs, where the object 
was occluded. As the object only reappeared on a small minority of 
trials, which were excluded from further analyses, these response 
patterns solely reflected participants’ expectations about the proxi-
mal shape of the occluded object.

Besides training on the classifier training runs and testing on 
main task runs, decoding was also done in the opposite direction 
(training on main task runs and testing on classifier training runs) 
and decoding performance was averaged across directions. This was 
done because factors unrelated to the task or stimulus, such as dif-
ferent signal-to-noise ratios, can lead to asymmetries between cross-
decoding directions (80). Although our results were consistent in 
the two decoding directions, they showed different noise levels 
(fig. S7). For all analyses reported in the main text, we thus averaged 
across directions to obtain a more robust estimate of the stimulus-
related information present in multivariate activation patterns. The 
training and testing datasets were z-scored before decoding.

MVPA was conducted using linear support vector machines 
(SVMs) implemented in Scikit-learn (81). As a measure of decoding 
performance, and thus information content in a given brain region, 
we used the continuous distance from the SVM’s hyperplane (i.e., 
distance to boundary) rather than discrete classification accuracy. 
Continuous measures of the distance between brain activation pat-
terns have been found to be more reliable than discrete ones, likely 
due to the lossy compression inherent in binary classification out-
comes (82). Specifically, we used the following continuous measure 
of decoding performance (which we call classifier information)

where di’s are the z-scored (across test samples) distances from the 
hyperplane, li’s are the true labels (either −1 or 1) for each sample, 
and n is the number of samples in the test set. Intuitively, this mea-
sure corresponds to the average match between each distance from 
bound and the corresponding ground-truth label, i.e., the degree to 
which the distance is positive when the target is positive, and nega-
tive when the target is negative. This measure is greater than zero 
when classification is above chance. The purpose of z-scoring the 
distances is to remove potential differences between SVMs trained 
and tested on different data, such as different hemispheres or decod-
ing directions. If the signal-to-noise ratio is higher when training on 
main task runs, for example, distances under this condition will be 
higher overall, leading to a disproportionate contribution of this 
condition when averaging across conditions. Similarly, averaging 
distances across test samples, rather than summing them, allows us 
to directly compare classification performance under different con-
ditions, which might have different numbers of samples, and aver-
age across them. Specifically, it is necessary for averaging across 
decoding directions. Classifier information was computed for each 
sub-ROI within the EVC and LVC, in each hemisphere, and each 
subject. It is important to note that this measure is closely linked to 

classification accuracy, and all our results were consistent, albeit 
noisier, when using classification accuracy instead of classifier infor-
mation (fig. S4).

Significance testing
To statistically test differences under classifier information between 
conditions (Experiment 1) and absolute amounts of classifier infor-
mation (Experiment 2), we used two approaches. (i) To avoid mak-
ing assumptions regarding the appropriate numbers of voxels to include 
in the analysis for each ROI, we averaged classifier information across 
numbers of included voxels (sub-ROIs) for each subject and ROI. In 
Experiment 1, this summary measure was compared between the 
congruent and incongruent conditions with a two-sided paired-
samples t test. In Experiment 2, it was compared against zero with a 
two-sided one-sample t test. These statistical tests, as well as the test 
on behavioral accuracy differences in Experiment 1, were run using 
Pingouin (83). (ii) To assess the robustness of (differences in) classi-
fier information across numbers of selected voxels, we used threshold-
free cluster enhancement (TFCE) (84). TFCE boosts the magnitude 
of a statistic based on its extent across neighboring samples (in this 
case, sub-ROIs with similar numbers of voxels), reflecting the as-
sumption that any signal in the data should be smooth across con-
secutive datapoints. This measure is then compared with a null 
distribution generated by randomly shifting the signs of each par-
ticipant’s 1D map (classifier information across sub-ROIs). This null 
distribution has the same variance and autocorrelation as the origi-
nal signal. The shuffling procedure was performed 10,000 times. A 
z-score then expresses how likely each observed TFCE values is, 
given the TFCE values in the 10,000 permuted (null) datasets, thus 
implicitly correcting for multiple comparisons. TFCE was comput-
ed using the MNE toolbox (85).

Univariate analysis
In Experiment 1, we used a univariate analysis to estimate differ-
ences in the overall response elicited by congruent and incongruent 
trials. This was done within the main visual ROIs, as well as across 
the whole brain. For the within-ROI analysis in the visual cortex, we 
used the same sub-ROIs as in the multivariate analysis, to directly 
compare the amount of information with the level of activation in 
the same voxels. We averaged the beta weights across voxels within 
each sub-ROI (number of selected voxels), separately in the EVC 
and LVC, resulting in one mean beta per condition (congruent and 
incongruent) and participant for each sub-ROI. The averages across 
sub-ROIs under the congruent and incongruent conditions were 
then compared using a two-sided paired t test. For the whole-brain 
analysis, we ran a second-level contrast (one sample two-sided t test 
against zero across participants) with α = 0.001 (False-Positive Rate 
corrected) and a cluster threshold of 10 voxels, using the threshold_
stats_img function in Nilearn (86).

Information-activation coupling analysis
The goal of the information-activation coupling analysis was to re-
veal regions of the brain in which univariate activation was more 
strongly correlated with the presence of multivariate information in 
the EVC in congruent than incongruent trials. To compute the aver-
age time courses of each voxel in the brain for each condition of in-
terest, we used GLMs with a finite impulse response (FIR) basis 
function (87). We thus obtained, for each condition and run, the 
BOLD response for 10 time bins (one second each) after stimulus 

Classifier Information =

1

n

n
∑

i=1

dili
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onset (final object appearance). To extract multivariate decoding time 
series, the BOLD activation patterns of the EVC in each time bin 
were fed to an SVM classifier trained to distinguish wide versus nar-
row mini-blocks in the training runs. The decoding procedure was 
the same as in the main multivariate analysis of Experiment 1. This 
yielded a classifier information score for each time bin for the con-
gruent and incongruent conditions. We computed the Pearson’s cor-
relation of these multivariate decoding time series with the time-resolved 
activation (averaged across runs) in each voxel of the brain for con-
gruent and incongruent conditions. This resulted in two whole-
brain maps of correlations for each subject for the congruent and 
incongruent conditions. To assess robustness to voxel inclusion (for 
the multivariate decoding in the EVC), the whole analysis was re-
peated for different numbers of included voxels (based on activation 
in the stimulus versus baseline contrast, across both hemispheres): 
500, 600, 700, 800, 900, and 1000 voxels. The resulting whole-brain 
maps were averaged. The maps for the congruent and incongruent 
conditions were then compared using a paired-samples t test to find 
voxels that were significantly more correlated with multivariate clas-
sification under the congruent than the incongruent condition. 
As we were exclusively interested in clusters that showed more cou-
pling for congruent than incongruent trials, we ran a one-sided test. 
Apart from this, we used the same Nilearn function and param-
eters as in the univariate analysis of Experiment 1 (see the section 
“Univariate analysis”).

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
Tables S1 to S3
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